forked from kysucix/gipuma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
displayUtils.h
245 lines (196 loc) · 7.64 KB
/
displayUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
* utility functions for visualization of results
*/
#pragma once
#include <sstream>
#include <fstream>
#if (CV_MAJOR_VERSION ==2)
#include <opencv2/contrib/contrib.hpp> // needed for applyColorMap!
#endif
/* compute gamma correction (just for display purposes to see more details in farther away areas of disparity image)
* Input: img - image
* gamma - gamma value
* Output: gamma corrected image
*/
Mat correctGamma( Mat& img, double gamma ) {
double inverse_gamma = 1.0 / gamma;
Mat lut_matrix(1, 256, CV_8UC1 );
uchar * ptr = lut_matrix.ptr();
for( int i = 0; i < 256; i++ )
ptr[i] = (int)( pow( (double) i / 255.0, inverse_gamma ) * 255.0 );
Mat result;
LUT( img, lut_matrix, result );
return result;
}
static void getDisparityForDisplay(const Mat_<float> &disp, Mat &dispGray, Mat &dispColor, float numDisparities, float minDisp = 0.0f){
float gamma = 2.0f; // to get higher contrast for lower disparity range (just for color visualization)
disp.convertTo(dispGray,CV_16U,65535.f/(numDisparities-minDisp),-minDisp*65535.f/(numDisparities-minDisp));
Mat disp8;
disp.convertTo(disp8,CV_8U,255.f/(numDisparities-minDisp),-minDisp*255.f/(numDisparities-minDisp));
if(minDisp == 0.0f)
disp8 = correctGamma(disp8,gamma);
applyColorMap(disp8, dispColor, COLORMAP_JET);
for(int y = 0; y < dispColor.rows; y++){
for(int x = 0; x < dispColor.cols; x++){
if(disp(y,x) <= 0.0f)
dispColor.at<Vec3b>(y,x) = Vec3b(0,0,0);
}
}
}
static void convertDisparityDepthImage(const Mat_<float> &dispL, Mat_<float> &d, float f, float baseline){
d = Mat::zeros(dispL.rows, dispL.cols, CV_32F);
for(int y = 0; y < dispL.rows; y++){
for(int x = 0; x < dispL.cols; x++){
d(y,x) = disparityDepthConversion(f,baseline,dispL(y,x));
}
}
}
static string getColorString(uint8_t color){
stringstream ss;
ss << (int)color << " " << (int)color << " " << (int)color;
return ss.str();
}
static string getColorString(Vec3b color){
stringstream ss;
ss << (int)color(2) << " " << (int)color(1) << " " << (int)color(0);
return ss.str();
}
static string getColorString(Vec3i color){
stringstream ss;
ss << (int)((float)color(2)/256.f) << " " << (int)((float)color(1)/256.f) << " " << (int)((float)color(0)/256.f);
return ss.str();
}
template <typename ImgType>
static void storePlyFileBinary(char* plyFilePath, const Mat_<float> &depthImg, const Mat_<Vec3f> &normals, const Mat_<ImgType> img, Camera cam, Mat_<float> &distImg){
cout << "Saving output depthmap in " << plyFilePath << endl;
FILE *outputPly;
outputPly=fopen(plyFilePath,"wb");
//write header
fprintf(outputPly, "ply\n");
fprintf(outputPly, "format binary_little_endian 1.0\n");
fprintf(outputPly, "element vertex %d\n",depthImg.rows * depthImg.cols);
fprintf(outputPly, "property float x\n");
fprintf(outputPly, "property float y\n");
fprintf(outputPly, "property float z\n");
fprintf(outputPly, "property float nx\n");
fprintf(outputPly, "property float ny\n");
fprintf(outputPly, "property float nz\n");
fprintf(outputPly, "property uchar red\n");
fprintf(outputPly, "property uchar green\n");
fprintf(outputPly, "property uchar blue\n");
fprintf(outputPly, "end_header\n");
distImg = Mat::zeros(depthImg.rows,depthImg.cols,CV_32F);
//write data
#pragma omp parallel for
for(int x = 0; x < depthImg.cols; x++){
for(int y = 0; y < depthImg.rows; y++){
/*
float zValue = depthImg(x,y);
float xValue = ((float)x-cx)*zValue/camParams.f;
float yValue = ((float)y-cy)*zValue/camParams.f;
myfile << xValue << " " << yValue << " " << zValue << endl;
*/
//Mat_<float> pt = Mat::ones(3,1,CV_32F);
//pt(0,0) = (float)x;
//pt(1,0) = (float)y;
Vec3f n = normals(y,x);
ImgType color = img(y,x);
//Mat_<float> ptX = P1_inv * depthImg(y,x)*pt;
//if(depthImg(y,x) <= 0.0001f)
// continue;
Vec3f ptX = get3Dpoint(cam,x,y,depthImg(y,x));
//Vec3f ptX_v1 = get3dPointFromPlane(cam.P_inv,cam.C,n,planes.d(y,x),x,y);
//cout << ptX_v1 << " / " << ptX << endl;
if(!(ptX(0) < FLT_MAX && ptX(0) > -FLT_MAX) || !(ptX(1) < FLT_MAX && ptX(12) > -FLT_MAX) || !(ptX(2) < FLT_MAX && ptX(2) >= -FLT_MAX)){
ptX(0) = 0.0f;
ptX(1) = 0.0f;
ptX(2) = 0.0f;
}
#pragma omp critical
{
//myfile << ptX(0) << " " << ptX(1) << " " << ptX(2) << " " << n(0) << " " << n(1) << " " << n(2) << " " << getColorString(color) << endl;
fwrite(&(ptX(0)), sizeof(float), 3, outputPly);
fwrite(&(n(0)) , sizeof(float), 3, outputPly);
fwrite(&color, sizeof(color) , 1, outputPly);
fwrite(&color, sizeof(color) , 1, outputPly);
fwrite(&color, sizeof(color) , 1, outputPly);
}
distImg(y,x) = sqrt(pow(ptX(0)-cam.C(0),2)+pow(ptX(1)-cam.C(1),2)+pow(ptX(2)-cam.C(2),2));
//}else{
// cout << ptX(0) << " " << ptX(1) << " " << ptX(2) << endl;
// cout << depthImg(y,x) << endl;
//}
//P *
//cout << xValue << " " << yValue << " " << zValue << " / " <<
}
}
fclose(outputPly);
}
template <typename ImgType>
static void storePlyFile(char* plyFilePath, const Mat_<float> &depthImg, const Mat_<Vec3f> &normals, const Mat_<ImgType> img, Camera cam, Mat_<float> &distImg){
cout << "store 3D points to ply file" << endl;
ofstream myfile;
myfile.open (plyFilePath, ios::out);
//write header
myfile << "ply" << endl;
myfile << "format ascii 1.0" << endl;
myfile << "element vertex " << depthImg.rows * depthImg.cols << endl;
myfile << "property float x" << endl;
myfile << "property float y" << endl;
myfile << "property float z" << endl;
myfile << "property float nx" << endl;
myfile << "property float ny" << endl;
myfile << "property float nz" << endl;
myfile << "property uchar red" << endl;
myfile << "property uchar green" << endl;
myfile << "property uchar blue" << endl;
myfile << "end_header" << endl;
distImg = Mat::zeros(depthImg.rows,depthImg.cols,CV_32F);
//write data
//#pragma omp parallel for
for(int x = 0; x < depthImg.cols; x++){
for(int y = 0; y < depthImg.rows; y++){
/*
float zValue = depthImg(x,y);
float xValue = ((float)x-cx)*zValue/camParams.f;
float yValue = ((float)y-cy)*zValue/camParams.f;
myfile << xValue << " " << yValue << " " << zValue << endl;
*/
//Mat_<float> pt = Mat::ones(3,1,CV_32F);
//pt(0,0) = (float)x;
//pt(1,0) = (float)y;
Vec3f n = normals(y,x);
ImgType color = img(y,x);
//Mat_<float> ptX = P1_inv * depthImg(y,x)*pt;
//if(depthImg(y,x) <= 0.0001f)
// continue;
Vec3f ptX = get3Dpoint(cam,x,y,depthImg(y,x));
//Vec3f ptX_v1 = get3dPointFromPlane(cam.P_inv,cam.C,n,planes.d(y,x),x,y);
//cout << ptX_v1 << " / " << ptX << endl;
if(!(ptX(0) < FLT_MAX && ptX(0) > -FLT_MAX) || !(ptX(1) < FLT_MAX && ptX(12) > -FLT_MAX) || !(ptX(2) < FLT_MAX && ptX(2) >= -FLT_MAX)){
ptX(0) = 0.0f;
ptX(1) = 0.0f;
ptX(2) = 0.0f;
}
//#pragma omp critical
{
myfile << ptX(0) << " " << ptX(1) << " " << ptX(2) << " " << n(0) << " " << n(1) << " " << n(2) << " " << getColorString(color) << endl;
}
distImg(y,x) = sqrt(pow(ptX(0)-cam.C(0),2)+pow(ptX(1)-cam.C(1),2)+pow(ptX(2)-cam.C(2),2));
//}else{
// cout << ptX(0) << " " << ptX(1) << " " << ptX(2) << endl;
// cout << depthImg(y,x) << endl;
//}
//P *
//cout << xValue << " " << yValue << " " << zValue << " / " <<
}
}
myfile.close();
}
static void getNormalsForDisplay(const Mat &normals, Mat &normals_display, int rtype = CV_16U){
if(rtype == CV_8U)
normals.convertTo(normals_display,CV_8U,128,128);
else
normals.convertTo(normals_display,CV_16U,32767,32767);
cvtColor(normals_display,normals_display,COLOR_RGB2BGR);
}