forked from aida-ugent/alpine_public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp2.py
219 lines (166 loc) · 7.49 KB
/
exp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
Performance of CNE_K with different querying strategies.
"""
import os
import random
from multiprocessing import Pool
import numpy as np
import scipy.sparse as sparse
from query import *
from utils import *
TYPE_EMBED = embed_cne_k # embed_sine, embed_cne, embed_cne_k
def test_for_s(folder_split, partial_net, test_e, y_true, X, post_P, ne_params, step_size, budget, strategy, ne_id, sid, use_dist_wt):
"""
Takes in a query strategy and runs the ALPINE algorithm
till the budget is depleted.
"""
s = strategy[sid] # Picks the query strategy to be followed
print('s', s, sid)
score_s = [] # Stores the final scores with this strategy
bgt = budget
cur_partial_net = partial_net.copy()
cur_X = X.copy()
cur_post_P = post_P.copy()
while bgt > 0:
print('bgt', bgt)
# Predict the next edges with current posterior probability
y_pred = predict(cur_post_P, test_e)
# append the score [here ROC-AUC scores]
score_s.append(eval_prediction(y_true, y_pred, eval_t))
# get the query results based on the current embeddings
query = get_query(cur_partial_net, cur_post_P, cur_X, step_size, bgt, ne_params, s, use_dist_wt = use_dist_wt)
print(s, 'len(query)', len(query), query[-10:], score_s[-1])
# update the partial net, embeddings and posterior probability
cur_partial_net = update_partial_net(cur_partial_net, query, full_A)
cur_X, cur_post_P = embed_cne_k(cur_partial_net, None, ne_params)
bgt -= len(query)
# do a final prediction and append scores
y_pred = predict(cur_post_P, test_e)
score_s.append(eval_prediction(y_true, y_pred, eval_t))
to_cache(folder_split+'/'+s+'_ne_'+str(ne_id)+'.pkl', score_s)
return score_s
def generate_pool(eids, size):
"""
return a random pool of eids of length `size`
"""
return np.array(random.sample(list(eids), size))
def one_split_all_s(p, folder_split, full_A, r_0, stp_s, case, bgt_k, pool_size, target_size, strategy, split_id, nr_ne, strat, use_dist_wt):
"""
do the required splitting of the dataset and call the test_for_s
with each individual strategy
"""
n = full_A.shape[0]
all_eid = e_to_eid(n, from_csr_matrix_to_edgelist(sparse.triu(np.ones_like(full_A), 1)))
# case 1
if case == 1:
S0_eid = memoize(generate_S0, folder_split+'/S0_'+str(split_id)+'.pkl', refresh=False)(full_A, r_0)
print('S0_eid', len(S0_eid))
U_eid = np.array(list(set(all_eid) - set(S0_eid)))
partial_net0 = get_partial_net(full_A, S0_eid, U_eid)
# case 2
elif case == 2:
S0_eid = memoize(generate_S0, folder_split+'/S0_'+str(split_id)+'.pkl', refresh=False)(full_A, r_0)
print('S0_eid', len(S0_eid))
U_eid = np.array(list(set(all_eid) - set(S0_eid)))
pool_eid = memoize(generate_pool, folder_split+'/pool_'+str(split_id)+'.pkl', refresh=False)(U_eid, pool_size)
print('pool_eid size', len(pool_eid))
partial_net0 = get_partial_net(full_A, S0_eid, U_eid, pool_eid)
# case 3
elif case == 3:
S0_eid, target_eid = memoize(split_node_pairs, folder_split+'/split_'+str(split_id)+'.pkl', refresh=False)(full_A, r_0, target_size)
print('S0_eid', len(S0_eid))
print('target_eid', len(target_eid))
U_eid = np.array(list(set(all_eid) - set(S0_eid)))
rest_u_eid = np.array(list(set(U_eid) - set(target_eid)))
pool_eid = memoize(generate_pool, folder_split+'/pool_'+str(split_id)+'.pkl', refresh=False)(rest_u_eid, pool_size)
print('pool_eid', len(pool_eid))
partial_net0 = get_partial_net(full_A, S0_eid, U_eid, pool_eid, target_eid)
# else
else:
# You can also define your partial net, P, and T here.
print('No such Case.')
# known edges
target_e = partial_net0['target_e']
y_true = full_A[target_e[:, 0], target_e[:, 1]]
# size of unknown edge set
size_unknown = len(partial_net0['u_eid'])
print('nr_unknown_e', size_unknown)
step_size = stp_s
budget = bgt_k
print('budget', budget, 'stp_s', stp_s)
# Loop over the different splits
for ne_id in range(nr_ne):
X0, post_P0 = memoize(embed_cne_k, folder_split+'/NE_'+str(ne_id)+'.pkl', refresh=False)(partial_net0, None, ne_params)
res_test_id = test_for_s(folder_split, partial_net0, target_e, y_true, X0, post_P0, ne_params, step_size, budget, strategy, ne_id, strat, use_dist_wt)
return 0
if __name__ == "__main__":
# changing dataset
dataname = 'celegans'
r_0 = 0.3
model_auc = []
model_time = []
# parameters for embedding method
ne_params = {"name": "cne", "d": 8, "s1": 1, "s2": 32,
"optimizer": {"name": "adam", "lr": 0.1, "max_iter": 2000}}
nr_split = 2
nr_ne = 3
case = 1
# 'random_1', 'random_2', 'random_3', 'pagerank', 'max_degree_sum', 'max_probability', 'min_distance', 'max_entropy'
strat = 7 # 0, ..., 7
use_dist_wt = False
for strat in range(8):
print("------------------------------------------------")
print("strat: ", strat)
print("------------------------------------------------")
# load data
if not os.path.exists(dataname):
os.makedirs(dataname)
full_A = load_data(dataname)
strategy, labels = strategy_collections()
n = full_A.shape[0]
m = 0.5*n*(n-1)
eval_t = 1
stp_s = int(m*0.01)
bgt_k = 10 # changing parameter
pool_size = None
target_size = None
folder = dataname+'/TU_PU_r0_'+str(int(r_0*100))+'_s'+str(ne_params['s2'])+'_split'+str(nr_split)+'_ne'+str(nr_ne)+'_stp'+str(stp_s)+'_bgt'+str(bgt_k)
if not os.path.exists(folder):
os.makedirs(folder)
# run experiment
res = []
p = Pool(processes=len(strategy))
for split_id in range(nr_split):
print("############### split = ", split_id)
folder_split = folder+'/split_'+str(split_id)
if not os.path.exists(folder_split):
os.makedirs(folder_split)
res_split_id = one_split_all_s(p, folder_split, full_A,
r_0, stp_s, case, bgt_k,
pool_size, target_size,
strategy, split_id, nr_ne, strat, use_dist_wt)
res.append(res_split_id)
print(res)
# print averaged the scores
avg_scores = {s: [] for s in labels}
# Append all the scores for all the
# strategies we ran the test for.
for split_id in range(nr_split):
for s_id in range(len(strategy)):
for ne_id in range(nr_ne):
path_id = folder+'/split_'+str(split_id)+'/'+strategy[s_id]+'_ne_'+str(ne_id)+'.pkl'
tmp = from_cache(path_id)
if s_id <= 2:
avg_scores[labels[0]].append(tmp)
else:
avg_scores[labels[s_id-2]].append(tmp)
# Average scores per label
res_avg_scores = {}
for j in range(len(labels)):
score_j = list(np.mean(np.array(avg_scores[labels[j]]), axis=0))
res_avg_scores[labels[j]] = score_j
print(res_avg_scores)
# remember the scores for each querying strategy
# model: CNE_K
model_auc.append(res_avg_scores[labels[0]][0])
print(model_auc)