-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDay-20-Permutation Sequence.cpp
67 lines (45 loc) · 1.22 KB
/
Day-20-Permutation Sequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
The set [1,2,3,...,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3
Output: "213"
Example 2:
Input: n = 4, k = 9
Output: "2314"
class Solution {
public:
vector<int> fact, digit;
void solve(int n, int k, string &res){
if(n==1){
res.push_back(digit[0]+'0');
return;
}
int index=k/fact[n-1];
if((k%fact[n-1])==0) index-=1; // boundary case
res.push_back(digit[index]+'0'); // add digit to index
digit.erase(digit.begin()+index); // remove used number
k-=fact[n-1]*index;
solve(n-1, k, res);
}
string getPermutation(int n, int k) {
string res;
if(n==0) return res;
fact.push_back(1); // 0!=1
for(int i=1;i<=n;i++)
fact.push_back(fact[i-1]*i);
for(int i=1;i<=n;i++)
digit.push_back(i);
solve(n, k, res);
return res;
}
};