-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathxgboost_test.py
39 lines (32 loc) · 1.93 KB
/
xgboost_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import json
import os
from kepler_model.train import DefaultExtractor
from kepler_model.train.profiler.profiler import response_to_result
from kepler_model.train.trainer.XGBoostTrainer.main import XGBoostRegressionStandalonePipeline
from kepler_model.util.train_types import FeatureGroup, XGBoostRegressionTrainType
energy_components = ["package", "core", "uncore", "dram"]
feature_group = FeatureGroup.BPFIRQ.name
energy_source = "rapl-sysfs"
prom_response_file = os.path.join(os.path.dirname(__file__), "data", "prom_output", "prom_response.json")
def read_sample_query_results():
with open(prom_response_file) as f:
response = json.load(f)
return response_to_result(response)
if __name__ == "__main__":
# Note that extractor mutates the query results
query_results = read_sample_query_results()
assert len(query_results) > 0, "cannot read_sample_query_results"
instance = DefaultExtractor()
extracted_data, power_columns, _, _ = instance.extract(query_results, energy_components, feature_group, energy_source, node_level=True)
xgb_container_level_pipeline_kfold = XGBoostRegressionStandalonePipeline(
XGBoostRegressionTrainType.KFoldCrossValidation, "test_models/XGBoost/", node_level=True
)
xgb_node_pipeline_kfold = XGBoostRegressionStandalonePipeline(XGBoostRegressionTrainType.KFoldCrossValidation, "test_models/XGBoost/", node_level=False)
xgb_container_level_pipeline_tts = XGBoostRegressionStandalonePipeline(
XGBoostRegressionTrainType.TrainTestSplitFit, "test_models/XGBoost/", node_level=False
)
xgb_node_pipeline_tts = XGBoostRegressionStandalonePipeline(XGBoostRegressionTrainType.TrainTestSplitFit, "test_models/XGBoost/", node_level=True)
xgb_node_pipeline_kfold.train(None, query_results)
xgb_container_level_pipeline_tts.train(None, query_results)
xgb_node_pipeline_tts.train(None, query_results)
xgb_container_level_pipeline_kfold.train(None, query_results)