forked from lballabio/QuantLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheulerdiscretization.cpp
64 lines (50 loc) · 2.45 KB
/
eulerdiscretization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004, 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/eulerdiscretization.hpp>
namespace QuantLib {
Disposable<Array> EulerDiscretization::drift(
const StochasticProcess& process,
Time t0, const Array& x0,
Time dt) const {
return process.drift(t0, x0)*dt;
}
Real EulerDiscretization::drift(const StochasticProcess1D& process,
Time t0, Real x0, Time dt) const {
return process.drift(t0, x0)*dt;
}
Disposable<Matrix> EulerDiscretization::diffusion(
const StochasticProcess& process,
Time t0, const Array& x0,
Time dt) const {
return process.diffusion(t0, x0) * std::sqrt(dt);
}
Real EulerDiscretization::diffusion(const StochasticProcess1D& process,
Time t0, Real x0, Time dt) const {
return process.diffusion(t0, x0) * std::sqrt(dt);
}
Disposable<Matrix> EulerDiscretization::covariance(
const StochasticProcess& process,
Time t0, const Array& x0,
Time dt) const {
Matrix sigma = process.diffusion(t0, x0);
Matrix result = sigma*transpose(sigma)*dt;
return result;
}
Real EulerDiscretization::variance(const StochasticProcess1D& process,
Time t0, Real x0, Time dt) const {
Real sigma = process.diffusion(t0, x0);
return sigma*sigma*dt;
}
}