forked from lballabio/QuantLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjointstochasticprocess.cpp
315 lines (239 loc) · 10.3 KB
/
jointstochasticprocess.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file jointstochasticprocess.cpp
\brief multi model process for hybrid products
*/
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/matrixutilities/pseudosqrt.hpp>
#include <ql/processes/jointstochasticprocess.hpp>
namespace QuantLib {
JointStochasticProcess::JointStochasticProcess(
const std::vector<boost::shared_ptr<StochasticProcess> > & l,
Size factors)
: l_ (l),
size_ (0),
factors_(factors),
modelFactors_(0) {
for (const_iterator iter=l_.begin(); iter != l_.end(); ++iter) {
registerWith(*iter);
}
vsize_.reserve (l_.size()+1);
vfactors_.reserve(l_.size()+1);
for (const_iterator iter = l_.begin(); iter != l_.end(); ++iter) {
vsize_.push_back(size_);
size_ += (*iter)->size();
vfactors_.push_back(modelFactors_);
modelFactors_ += (*iter)->factors();
}
vsize_.push_back(size_);
vfactors_.push_back(modelFactors_);
if (factors_ == Null<Size>()) {
factors_ = modelFactors_;
} else {
QL_REQUIRE(factors_ <= size_, "too many factors given");
}
}
Size JointStochasticProcess::size() const {
return size_;
}
Size JointStochasticProcess::factors() const {
return factors_;
}
Disposable<Array> JointStochasticProcess::slice(const Array& x,
Size i) const {
// cut out the ith process' variables
Size n = vsize_[i+1]-vsize_[i];
Array y(n);
std::copy(x.begin()+vsize_[i], x.begin()+vsize_[i+1], y.begin());
return y;
}
Disposable<Array> JointStochasticProcess::initialValues() const {
Array retVal(size());
for (const_iterator iter = l_.begin(); iter != l_.end(); ++iter) {
const Array& pInitValues = (*iter)->initialValues();
std::copy(pInitValues.begin(), pInitValues.end(),
retVal.begin()+vsize_[iter - l_.begin()]);
}
return retVal;
}
Disposable<Array> JointStochasticProcess::drift(Time t,
const Array& x) const {
Array retVal(size());
for (Size i=0; i < l_.size(); ++i) {
const Array& pDrift = l_[i]->drift(t, slice(x,i));
std::copy(pDrift.begin(), pDrift.end(),
retVal.begin()+vsize_[i]);
}
return retVal;
}
Disposable<Array> JointStochasticProcess::expectation(Time t0,
const Array& x0,
Time dt) const {
Array retVal(size());
for (Size i=0; i < l_.size(); ++i) {
const Array& pExpectation = l_[i]->expectation(t0, slice(x0,i), dt);
std::copy(pExpectation.begin(), pExpectation.end(),
retVal.begin()+ vsize_[i]);
}
return retVal;
}
Disposable<Matrix> JointStochasticProcess::diffusion(
Time t, const Array& x) const {
// might need some improvement in the future
const Time dt = 0.001;
return pseudoSqrt(covariance(t, x, dt)/dt);
}
Disposable<Matrix> JointStochasticProcess::covariance(Time t0,
const Array& x0,
Time dt) const {
// get the model intrinsic covariance matrix
Matrix retVal(size(), size(), 0.0);
for (Size j=0; j < l_.size(); ++j) {
const Size vs = vsize_[j];
const Matrix& pCov = l_[j]->covariance(t0, slice(x0,j), dt);
for (Size i=0; i < pCov.rows(); ++i) {
std::copy(pCov.row_begin(i), pCov.row_end(i),
retVal.row_begin(vs+i) + vs);
}
}
// add the cross model covariance matrix
const Array& volatility = Sqrt(retVal.diagonal());
Matrix crossModelCovar = this->crossModelCorrelation(t0, x0);
for (Size i=0; i < size(); ++i) {
for (Size j=0; j < size(); ++j) {
crossModelCovar[i][j] *= volatility[i]*volatility[j];
}
}
retVal += crossModelCovar;
return retVal;
}
Disposable<Matrix> JointStochasticProcess::stdDeviation(Time t0,
const Array& x0,
Time dt) const {
return pseudoSqrt(covariance(t0, x0, dt));
}
Disposable<Array> JointStochasticProcess::apply(const Array& x0,
const Array& dx) const {
Array retVal(size());
for (Size i=0; i < l_.size(); ++i) {
const Array& pApply = l_[i]->apply(slice(x0,i), slice(dx,i));
std::copy(pApply.begin(), pApply.end(),
retVal.begin()+vsize_[i]);
}
return retVal;
}
Disposable<Array> JointStochasticProcess::evolve(
Time t0, const Array& x0, Time dt, const Array& dw) const {
Array dv(modelFactors_);
if ( correlationIsStateDependent()
|| correlationCache_.count(CachingKey(t0, dt)) == 0) {
Matrix cov = covariance(t0, x0, dt);
const Array& sqrtDiag = Sqrt(cov.diagonal());
for (Size i=0; i < cov.rows(); ++i) {
for (Size j=i; j < cov.columns(); ++j) {
const Real div = sqrtDiag[i]*sqrtDiag[j];
cov[i][j] = cov[j][i] = ( div > 0) ? cov[i][j]/div : 0.0;
}
}
Matrix diff(size(), modelFactors_, 0.0);
for (Size j = 0; j < l_.size(); ++j) {
const Size vs = vsize_ [j];
const Size vf = vfactors_[j];
Matrix stdDev = l_[j]->stdDeviation(t0, slice(x0,j), dt);
for (Size i=0; i < stdDev.rows(); ++i) {
const Volatility vol = std::sqrt(
std::inner_product(stdDev.row_begin(i),
stdDev.row_end(i),
stdDev.row_begin(i), 0.0));
if (vol > 0.0) {
std::transform(stdDev.row_begin(i), stdDev.row_end(i),
stdDev.row_begin(i),
std::bind2nd(std::divides<Real>(),
vol));
}
else {
// keep the svd happy
std::fill(stdDev.row_begin(i), stdDev.row_end(i),
100*i*QL_EPSILON);
}
}
SVD svd(stdDev);
const Array& s = svd.singularValues();
Matrix w(s.size(), s.size(), 0.0);
for (Size i=0; i < s.size(); ++i) {
if (std::fabs(s[i]) > std::sqrt(QL_EPSILON)) {
w[i][i] = 1.0/s[i];
}
}
const Matrix inv = svd.U() * w * transpose(svd.V());
for (Size i=0; i < stdDev.rows(); ++i) {
std::copy(inv.row_begin(i), inv.row_end(i),
diff.row_begin(i+vs)+vf);
}
}
Matrix rs = rankReducedSqrt(cov, factors_, 1.0,
SalvagingAlgorithm::Spectral);
if (rs.columns() < factors_) {
// less eigenvalues than expected factors.
// fill the rest with zero's.
Matrix tmp = Matrix(cov.rows(), factors_, 0.0);
for (Size i=0; i < cov.rows(); ++i) {
std::copy(rs.row_begin(i), rs.row_end(i),
tmp.row_begin(i));
}
rs = tmp;
}
const Matrix m = transpose(diff) * rs;
if (!correlationIsStateDependent()) {
correlationCache_[CachingKey(t0,dt)] = m;
}
dv = m*dw;
}
else {
if (!correlationIsStateDependent()) {
dv = correlationCache_[CachingKey(t0,dt)] * dw;
}
}
this->preEvolve(t0, x0, dt, dv);
Array retVal(size());
for (const_iterator iter = l_.begin(); iter != l_.end(); ++iter) {
const Size i = iter - l_.begin();
Array dz((*iter)->factors());
std::copy(dv.begin()+vfactors_[i],
dv.begin()+vfactors_[i] + (*iter)->factors(),
dz.begin());
Array x((*iter)->size());
std::copy(x0.begin()+vsize_[i],
x0.begin()+vsize_[i] + (*iter)->size(),
x.begin());
const Array r = (*iter)->evolve(t0, x, dt, dz);
std::copy(r.begin(), r.end(), retVal.begin()+vsize_[i]);
}
return this->postEvolve(t0, x0, dt, dv, retVal);
}
const std::vector<boost::shared_ptr<StochasticProcess> > &
JointStochasticProcess::constituents() const {
return l_;
}
Time JointStochasticProcess::time(const Date& date) const {
QL_REQUIRE(l_.size() > 0, "process list is empty");
return l_[0]->time(date);
}
void JointStochasticProcess::update() {
// clear all caches
correlationCache_.clear();
this->StochasticProcess::update();
}
}