forked from lballabio/QuantLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjointstochasticprocess.hpp
106 lines (79 loc) · 3.7 KB
/
jointstochasticprocess.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007, 2008 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file jointstochasticprocess.hpp
\brief multi model process for hybrid products
*/
#ifndef quantlib_joint_stochastic_process_hpp
#define quantlib_joint_stochastic_process_hpp
#include <ql/utilities/null.hpp>
#include <ql/stochasticprocess.hpp>
#include <vector>
#include <map>
namespace QuantLib {
class JointStochasticProcess : public StochasticProcess {
public:
JointStochasticProcess(
const std::vector<boost::shared_ptr<StochasticProcess> > & l,
Size factors = Null<Size>() );
Size size() const;
Size factors() const;
Disposable<Array> initialValues() const;
Disposable<Array> drift(Time t, const Array& x) const;
Disposable<Array> expectation(Time t0, const Array& x0, Time dt) const;
Disposable<Matrix> diffusion(Time t, const Array& x) const;
Disposable<Matrix> covariance(Time t0, const Array& x0, Time dt) const;
Disposable<Matrix> stdDeviation(Time t0, const Array& x0,
Time dt) const;
Disposable<Array> apply(const Array& x0, const Array& dx) const;
Disposable<Array> evolve(Time t0, const Array& x0,
Time dt, const Array& dw) const;
virtual void preEvolve(Time t0, const Array& x0,
Time dt, const Array& dw) const = 0;
virtual Disposable<Array> postEvolve(Time t0, const Array& x0,
Time dt, const Array& dw,
const Array& y0) const = 0;
virtual DiscountFactor numeraire(Time t, const Array& x) const = 0;
virtual bool correlationIsStateDependent() const = 0;
virtual Disposable<Matrix> crossModelCorrelation(
Time t0, const Array& x0) const = 0;
const std::vector<boost::shared_ptr<StochasticProcess> > &
constituents() const;
void update();
Time time(const Date& date) const;
protected:
std::vector<boost::shared_ptr<StochasticProcess> > l_;
Disposable<Array> slice(const Array& x, Size i) const;
private:
typedef
std::vector<boost::shared_ptr<StochasticProcess> >::const_iterator
const_iterator;
typedef std::vector<boost::shared_ptr<StochasticProcess> >::iterator
iterator;
Size size_, factors_, modelFactors_;
std::vector<Size> vsize_, vfactors_;
struct CachingKey {
CachingKey(const Time t0, const Time dt)
: t0_(t0), dt_(dt) {}
bool operator<(const CachingKey& key) const {
return t0_ < key.t0_
|| ( t0_ == key.t0_ && dt_ < key.dt_);
}
Time t0_;
Time dt_;
};
mutable std::map<CachingKey, Matrix> correlationCache_;
};
}
#endif