forked from lballabio/QuantLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstochasticprocessarray.cpp
131 lines (109 loc) · 4.81 KB
/
stochasticprocessarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005 Klaus Spanderen
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/math/matrixutilities/pseudosqrt.hpp>
namespace QuantLib {
StochasticProcessArray::StochasticProcessArray(
const std::vector<boost::shared_ptr<StochasticProcess1D> >& processes,
const Matrix& correlation)
: processes_(processes),
sqrtCorrelation_(pseudoSqrt(correlation,SalvagingAlgorithm::Spectral)) {
QL_REQUIRE(!processes.empty(), "no processes given");
QL_REQUIRE(correlation.rows() == processes.size(),
"mismatch between number of processes "
"and size of correlation matrix");
for (Size i=0; i<processes_.size(); i++)
registerWith(processes_[i]);
}
Size StochasticProcessArray::size() const {
return processes_.size();
}
Disposable<Array> StochasticProcessArray::initialValues() const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->x0();
return tmp;
}
Disposable<Array> StochasticProcessArray::drift(Time t,
const Array& x) const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->drift(t, x[i]);
return tmp;
}
Disposable<Matrix> StochasticProcessArray::diffusion(
Time t, const Array& x) const {
Matrix tmp = sqrtCorrelation_;
for (Size i=0; i<size(); ++i) {
Real sigma = processes_[i]->diffusion(t, x[i]);
std::transform(tmp.row_begin(i), tmp.row_end(i),
tmp.row_begin(i),
std::bind2nd(std::multiplies<Real>(),sigma));
}
return tmp;
}
Disposable<Array> StochasticProcessArray::expectation(Time t0,
const Array& x0,
Time dt) const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->expectation(t0, x0[i], dt);
return tmp;
}
Disposable<Matrix> StochasticProcessArray::stdDeviation(Time t0,
const Array& x0,
Time dt) const {
Matrix tmp = sqrtCorrelation_;
for (Size i=0; i<size(); ++i) {
Real sigma = processes_[i]->stdDeviation(t0, x0[i], dt);
std::transform(tmp.row_begin(i), tmp.row_end(i),
tmp.row_begin(i),
std::bind2nd(std::multiplies<Real>(),sigma));
}
return tmp;
}
Disposable<Matrix> StochasticProcessArray::covariance(Time t0,
const Array& x0,
Time dt) const {
Matrix tmp = stdDeviation(t0, x0, dt);
return tmp*transpose(tmp);
}
Disposable<Array> StochasticProcessArray::evolve(
Time t0, const Array& x0, Time dt, const Array& dw) const {
const Array dz = sqrtCorrelation_ * dw;
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->evolve(t0, x0[i], dt, dz[i]);
return tmp;
}
Disposable<Array> StochasticProcessArray::apply(const Array& x0,
const Array& dx) const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->apply(x0[i],dx[i]);
return tmp;
}
Time StochasticProcessArray::time(const Date& d) const {
return processes_[0]->time(d);
}
const boost::shared_ptr<StochasticProcess1D>&
StochasticProcessArray::process(Size i) const {
return processes_[i];
}
Disposable<Matrix> StochasticProcessArray::correlation() const {
return sqrtCorrelation_ * transpose(sqrtCorrelation_);
}
}