From 7b9467399d9d92209eaf7d21ff17695c4aeac3ca Mon Sep 17 00:00:00 2001 From: miguelhx Date: Wed, 15 Sep 2021 17:47:36 -0700 Subject: [PATCH 1/6] initial file setup for problem --- Python/chapter04/p02_minimal_tree/miguelHx.py | 180 ++++++++++++++++++ 1 file changed, 180 insertions(+) create mode 100644 Python/chapter04/p02_minimal_tree/miguelHx.py diff --git a/Python/chapter04/p02_minimal_tree/miguelHx.py b/Python/chapter04/p02_minimal_tree/miguelHx.py new file mode 100644 index 00000000..4ded0104 --- /dev/null +++ b/Python/chapter04/p02_minimal_tree/miguelHx.py @@ -0,0 +1,180 @@ +"""Python Version 3.9.2 +4.1 - Route Between Nodes: +Given a directed graph, design an algorithm to +find out whether there is a route between two nodes. +""" +import unittest + +from collections import deque +from dataclasses import dataclass +from typing import List, Deque, Set + + +@dataclass +class Graph: + nodes: 'List[Node]' + + def print_graph(self): + for node in self.nodes: + node.print_children() + + +@dataclass +class Node: + id: int + children: 'List[Node]' + + def add_child(self, *nodes: 'Node'): + for node in nodes: + self.children.append(node) + + def children_as_str(self) -> str: + return ', '.join(str(child.id) for child in self.children) + + def print_children(self): + logging.debug('Adjacency list for node %s: %s', self.id, self.children_as_str()) + + def __str__(self): + return f'Node ({self.id}), children: {self.children_as_str()}' + +def bfs_search_exhaustive(root: Node) -> List[int]: + """Simple BFS. + takes in a root, returns a list + of ids of the sequence of visited + nodes. Goes through entire graph. + + Args: + root (Node): starting node + + Returns: + List[int]: List[int]: list of node IDs (i.e. [0, 1, 4]) + """ + visited_list: List[int] = [root.id] + visited: Set[int] = set([root.id]) + queue: Deque[Node] = deque([root]) + while queue: + node = queue.popleft() + # print(f'Visiting node ({node.id})') + for n in node.children: + if n.id not in visited: + queue.append(n) + visited_list.append(n.id) + visited.add(n.id) + return visited_list + + +def bfs_search_for_dest(root: Node, dest: Node) -> List[int]: + """Simple BFS. + takes in a root, returns a list + of ids of the sequence of visited + nodes. Stops at destination node + + Args: + root (Node): starting node + + Returns: + List[int]: List[int]: list of node IDs (i.e. [0, 1, 4]) + """ + visited_list: List[int] = [root.id] + visited: Set[int] = set([root.id]) + queue: Deque[Node] = deque([root]) + while queue: + node = queue.popleft() + # print(f'Visiting node ({node.id})') + for n in node.children: + if n.id not in visited: + queue.append(n) + visited_list.append(n.id) + visited.add(n.id) + if n.id == dest.id: + # done searching + return visited_list + return visited_list + +def route_between_nodes(src: Node, dest: Node) -> bool: + """This function will return true if a path + is found between two nodes, false otherwise. + The idea is to perform a breadth first search + from src to dest. After obtaining a list of + nodes visited, we simply check to see if destination + node id is in there. + + Runtime Complexity: + O(V + E) where V represents the number of + nodes in the graph and E represents the number + of edges in this graph. + Space Complexity: + O(V) where V represents the number of existing nodes + in the graph. + + Args: + src (Node): from node + dest (Node): destination node + + Returns: + bool: whether a path between src and dest exists + """ + ids_visited: List[int] = bfs_search_for_dest(src, dest) + return dest.id in ids_visited + + +class TestRouteBetweenNodes(unittest.TestCase): + def test_route_between_nodes(self): + n0 = Node(0, []) + n1 = Node(1, []) + n2 = Node(2, []) + n3 = Node(3, []) + n4 = Node(4, []) + n5 = Node(5, []) + n0.add_child(n1, n4, n5) + n1.add_child(n3, n4) + n2.add_child(n1) + n3.add_child(n2, n4) + # must remember to reset node visited properties + # before each fresh run + g = Graph([n0, n1, n2, n3, n4, n5]) + # There is a route from node 0 to node 2 + self.assertTrue(route_between_nodes(n0, n2)) + # No route between node 1 and node 0 + self.assertFalse(route_between_nodes(n1, n0)) + # There is a route from node 2 to node 3 + self.assertTrue(route_between_nodes(n2, n3)) + +class TestMyGraphSearch(unittest.TestCase): + + def test_basic_graph_creation(self): + n0 = Node(0, []) + n1 = Node(1, []) + n2 = Node(2, []) + n3 = Node(3, []) + n4 = Node(4, []) + n5 = Node(5, []) + n6 = Node(6, []) + n0.add_child(n1) + n1.add_child(n2) + n2.add_child(n0, n3) + n3.add_child(n2) + n4.add_child(n6) + n5.add_child(n4) + n6.add_child(n5) + nodes = [n0, n1, n2, n3, n4, n5, n6] + g = Graph(nodes) + # g.print_graph() + + def test_basic_breadth_first_search_exhaustive(self): + n0 = Node(0, []) + n1 = Node(1, []) + n2 = Node(2, []) + n3 = Node(3, []) + n4 = Node(4, []) + n5 = Node(5, []) + n0.add_child(n1, n4, n5) + n1.add_child(n3, n4) + n2.add_child(n1) + n3.add_child(n2, n4) + result: List[int] = bfs_search_exhaustive(n0) + self.assertEqual(result, [0, 1, 4, 5, 3, 2]) + + +if __name__ == '__main__': + unittest.main() From b3a4ba4eb5f766d801bc5e6ffb2f506b81393a34 Mon Sep 17 00:00:00 2001 From: miguelhx Date: Sat, 18 Sep 2021 03:36:06 -0700 Subject: [PATCH 2/6] BST data structure implementation --- Python/chapter04/p02_minimal_tree/miguelHx.py | 252 +++++++----------- 1 file changed, 91 insertions(+), 161 deletions(-) diff --git a/Python/chapter04/p02_minimal_tree/miguelHx.py b/Python/chapter04/p02_minimal_tree/miguelHx.py index 4ded0104..bb069550 100644 --- a/Python/chapter04/p02_minimal_tree/miguelHx.py +++ b/Python/chapter04/p02_minimal_tree/miguelHx.py @@ -1,179 +1,109 @@ """Python Version 3.9.2 -4.1 - Route Between Nodes: -Given a directed graph, design an algorithm to -find out whether there is a route between two nodes. +4.2 - Minimal Tree: +Given a sorted (increasing order) array with unique integer elements, +write an algorithm to create a binary search tree with minimal height. """ import unittest -from collections import deque +from abc import abstractmethod from dataclasses import dataclass -from typing import List, Deque, Set +from typing import Generic, TypeVar +from typing import Optional, Protocol +from typing import Generator -@dataclass -class Graph: - nodes: 'List[Node]' +T = TypeVar('T', bound='Comparable') + +class Comparable(Protocol): + @abstractmethod + def __lt__(self, other: T) -> bool: + pass - def print_graph(self): - for node in self.nodes: - node.print_children() + @abstractmethod + def __gt__(self, other: T) -> bool: + pass + @abstractmethod + def __eq__(self, other: T) -> bool: + pass @dataclass -class Node: - id: int - children: 'List[Node]' +class BSTNode: + val: int + left_child: 'Optional[BSTNode]' = None + right_child: 'Optional[BSTNode]' = None - def add_child(self, *nodes: 'Node'): - for node in nodes: - self.children.append(node) + def __str__(self): + return f'Node ({self.id}), Left ID: {self.left_child.id}, Right ID: {self.right_child.id}' - def children_as_str(self) -> str: - return ', '.join(str(child.id) for child in self.children) +class BSTIterator: - def print_children(self): - logging.debug('Adjacency list for node %s: %s', self.id, self.children_as_str()) + def __init__(self, root: BSTNode): + self.gen = self.in_order_traversal_generator(root) - def __str__(self): - return f'Node ({self.id}), children: {self.children_as_str()}' - -def bfs_search_exhaustive(root: Node) -> List[int]: - """Simple BFS. - takes in a root, returns a list - of ids of the sequence of visited - nodes. Goes through entire graph. - - Args: - root (Node): starting node - - Returns: - List[int]: List[int]: list of node IDs (i.e. [0, 1, 4]) - """ - visited_list: List[int] = [root.id] - visited: Set[int] = set([root.id]) - queue: Deque[Node] = deque([root]) - while queue: - node = queue.popleft() - # print(f'Visiting node ({node.id})') - for n in node.children: - if n.id not in visited: - queue.append(n) - visited_list.append(n.id) - visited.add(n.id) - return visited_list - - -def bfs_search_for_dest(root: Node, dest: Node) -> List[int]: - """Simple BFS. - takes in a root, returns a list - of ids of the sequence of visited - nodes. Stops at destination node - - Args: - root (Node): starting node - - Returns: - List[int]: List[int]: list of node IDs (i.e. [0, 1, 4]) - """ - visited_list: List[int] = [root.id] - visited: Set[int] = set([root.id]) - queue: Deque[Node] = deque([root]) - while queue: - node = queue.popleft() - # print(f'Visiting node ({node.id})') - for n in node.children: - if n.id not in visited: - queue.append(n) - visited_list.append(n.id) - visited.add(n.id) - if n.id == dest.id: - # done searching - return visited_list - return visited_list - -def route_between_nodes(src: Node, dest: Node) -> bool: - """This function will return true if a path - is found between two nodes, false otherwise. - The idea is to perform a breadth first search - from src to dest. After obtaining a list of - nodes visited, we simply check to see if destination - node id is in there. - - Runtime Complexity: - O(V + E) where V represents the number of - nodes in the graph and E represents the number - of edges in this graph. - Space Complexity: - O(V) where V represents the number of existing nodes - in the graph. - - Args: - src (Node): from node - dest (Node): destination node - - Returns: - bool: whether a path between src and dest exists - """ - ids_visited: List[int] = bfs_search_for_dest(src, dest) - return dest.id in ids_visited - - -class TestRouteBetweenNodes(unittest.TestCase): - def test_route_between_nodes(self): - n0 = Node(0, []) - n1 = Node(1, []) - n2 = Node(2, []) - n3 = Node(3, []) - n4 = Node(4, []) - n5 = Node(5, []) - n0.add_child(n1, n4, n5) - n1.add_child(n3, n4) - n2.add_child(n1) - n3.add_child(n2, n4) - # must remember to reset node visited properties - # before each fresh run - g = Graph([n0, n1, n2, n3, n4, n5]) - # There is a route from node 0 to node 2 - self.assertTrue(route_between_nodes(n0, n2)) - # No route between node 1 and node 0 - self.assertFalse(route_between_nodes(n1, n0)) - # There is a route from node 2 to node 3 - self.assertTrue(route_between_nodes(n2, n3)) - -class TestMyGraphSearch(unittest.TestCase): - - def test_basic_graph_creation(self): - n0 = Node(0, []) - n1 = Node(1, []) - n2 = Node(2, []) - n3 = Node(3, []) - n4 = Node(4, []) - n5 = Node(5, []) - n6 = Node(6, []) - n0.add_child(n1) - n1.add_child(n2) - n2.add_child(n0, n3) - n3.add_child(n2) - n4.add_child(n6) - n5.add_child(n4) - n6.add_child(n5) - nodes = [n0, n1, n2, n3, n4, n5, n6] - g = Graph(nodes) - # g.print_graph() - - def test_basic_breadth_first_search_exhaustive(self): - n0 = Node(0, []) - n1 = Node(1, []) - n2 = Node(2, []) - n3 = Node(3, []) - n4 = Node(4, []) - n5 = Node(5, []) - n0.add_child(n1, n4, n5) - n1.add_child(n3, n4) - n2.add_child(n1) - n3.add_child(n2, n4) - result: List[int] = bfs_search_exhaustive(n0) - self.assertEqual(result, [0, 1, 4, 5, 3, 2]) + def in_order_traversal_generator(self, node: BSTNode) -> Generator: + if node.left_child: + yield from self.in_order_traversal_generator(node.left_child) + yield node.val + if node.right_child: + yield from self.in_order_traversal_generator(node.right_child) + + def __next__(self) -> T: + return next(self.gen) + +@dataclass +class BinarySearchTree: + root: 'Optional[BSTNode]' + + def insert(self, value: T) -> None: + if not self.root: + self.root = BSTNode(value) + else: + self._insert(value, self.root) + + def _insert(self, value: T, curr_node: BSTNode) -> None: + if value < curr_node.val: + if not curr_node.left_child: + # insert here + curr_node.left_child = BSTNode(value) + else: + # otherwise, keep searching left subtree + self._insert(value, curr_node.left_child) + elif value > curr_node.val: + if not curr_node.right_child: + # insert here + curr_node.right_child = BSTNode(value) + else: + # otherwise, keep searching right subtree + self._insert(value, curr_node.right_child) + else: + raise ValueError(f'Value {value} already exists in tree.') + + def print_tree(self): + if self.root: + self._print_tree(self.root) + + def _print_tree(self, curr_node: BSTNode) -> None: + if curr_node: + self._print_tree(curr_node.left_child) + print(curr_node.val) + self._print_tree(curr_node.right_child) + + def __iter__(self) -> Generator: + return BSTIterator(self.root) + + +class TestBinarySearchTree(unittest.TestCase): + + def test_binary_search_tree_creation(self): + bst = BinarySearchTree(None) + bst.insert(8) + bst.insert(4) + bst.insert(10) + bst.insert(2) + bst.insert(6) + bst.insert(20) + self.assertEqual(list(bst), [2, 4, 6, 8, 10, 20]) if __name__ == '__main__': From 2a93f2a1e2f5c7c514d9c0b97bf5f72056c4ab92 Mon Sep 17 00:00:00 2001 From: miguelhx Date: Thu, 23 Sep 2021 09:43:51 -0700 Subject: [PATCH 3/6] Implement minimal tree with a test case --- Python/chapter04/p02_minimal_tree/miguelHx.py | 73 ++++++++++++++++++- 1 file changed, 69 insertions(+), 4 deletions(-) diff --git a/Python/chapter04/p02_minimal_tree/miguelHx.py b/Python/chapter04/p02_minimal_tree/miguelHx.py index bb069550..1972888d 100644 --- a/Python/chapter04/p02_minimal_tree/miguelHx.py +++ b/Python/chapter04/p02_minimal_tree/miguelHx.py @@ -3,13 +3,14 @@ Given a sorted (increasing order) array with unique integer elements, write an algorithm to create a binary search tree with minimal height. """ +import math import unittest from abc import abstractmethod from dataclasses import dataclass from typing import Generic, TypeVar from typing import Optional, Protocol -from typing import Generator +from typing import Generator, List T = TypeVar('T', bound='Comparable') @@ -53,7 +54,7 @@ def __next__(self) -> T: @dataclass class BinarySearchTree: - root: 'Optional[BSTNode]' + root: 'Optional[BSTNode]' = None def insert(self, value: T) -> None: if not self.root: @@ -79,6 +80,15 @@ def _insert(self, value: T, curr_node: BSTNode) -> None: else: raise ValueError(f'Value {value} already exists in tree.') + def height(self) -> int: + return self._height(self.root) + + def _height(self, node: Optional[BSTNode]) -> int: + if not node: + return 0 + else: + return 1 + max(self._height(node.left_child), self._height(node.right_child)) + def print_tree(self): if self.root: self._print_tree(self.root) @@ -93,10 +103,43 @@ def __iter__(self) -> Generator: return BSTIterator(self.root) + +def minimal_tree(arr: List[T], bst: Optional[BinarySearchTree] = None) -> BinarySearchTree: + """Given a sorted (increasing order) array + with unique integer elements, write an algorithm + to create a binary search tree with minimal height. + Basic steps: + 1. get midpoint + 2. insert midpoint into bst + 3. turn left to get left midpoint until no more values + 4. turn right to insert right midpoint until no more values + + Time Complexity: O(n) where n is size of arr + Space Complexity: O(n) + + Args: + arr (List[T]): list of unique numbers sorted, in incr. order. + + Returns: + BinarySearchTree: A binary search tree with minimal height. + """ + bst = BinarySearchTree() if not bst else bst + if not arr: + return bst + # middle value gets inserted first before going left or right + middle = math.floor(len(arr) / 2) + bst.insert(arr[middle]) + left_subarr = arr[:middle] + right_subarr = arr[middle+1:] + minimal_tree(left_subarr, bst) + minimal_tree(right_subarr, bst) + return bst + + class TestBinarySearchTree(unittest.TestCase): - def test_binary_search_tree_creation(self): - bst = BinarySearchTree(None) + def test_binary_search_tree_creation_height_3(self): + bst = BinarySearchTree() bst.insert(8) bst.insert(4) bst.insert(10) @@ -104,6 +147,28 @@ def test_binary_search_tree_creation(self): bst.insert(6) bst.insert(20) self.assertEqual(list(bst), [2, 4, 6, 8, 10, 20]) + self.assertEqual(bst.height(), 3) + + def test_binary_search_tree_creation_height_4(self): + bst = BinarySearchTree() + bst.insert(8) + bst.insert(2) + bst.insert(10) + bst.insert(4) + bst.insert(6) + bst.insert(20) + self.assertEqual(list(bst), [2, 4, 6, 8, 10, 20]) + self.assertEqual(bst.height(), 4) + + +class TestMinimalTree(unittest.TestCase): + + def test_minimal_tree(self): + # sorted, increasing order array + arr = [2, 4, 6, 8, 9, 10, 20] + bst = minimal_tree(arr) + self.assertEqual(list(bst), [2, 4, 6, 8, 9, 10, 20]) + self.assertEqual(bst.height(), 3) if __name__ == '__main__': From d67ea5af6cebde25c6092033d80e731e1d48c517 Mon Sep 17 00:00:00 2001 From: miguelhx Date: Thu, 23 Sep 2021 09:58:42 -0700 Subject: [PATCH 4/6] Fix some mypy errors --- Python/chapter04/p02_minimal_tree/miguelHx.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/Python/chapter04/p02_minimal_tree/miguelHx.py b/Python/chapter04/p02_minimal_tree/miguelHx.py index 1972888d..b91716fc 100644 --- a/Python/chapter04/p02_minimal_tree/miguelHx.py +++ b/Python/chapter04/p02_minimal_tree/miguelHx.py @@ -15,7 +15,7 @@ T = TypeVar('T', bound='Comparable') -class Comparable(Protocol): +class Comparable(Protocol[T]): @abstractmethod def __lt__(self, other: T) -> bool: pass @@ -25,12 +25,12 @@ def __gt__(self, other: T) -> bool: pass @abstractmethod - def __eq__(self, other: T) -> bool: + def __eq__(self, other: object) -> bool: pass @dataclass -class BSTNode: - val: int +class BSTNode(Generic[T]): + val: T left_child: 'Optional[BSTNode]' = None right_child: 'Optional[BSTNode]' = None @@ -39,10 +39,12 @@ def __str__(self): class BSTIterator: - def __init__(self, root: BSTNode): + def __init__(self, root: Optional[BSTNode]): self.gen = self.in_order_traversal_generator(root) - def in_order_traversal_generator(self, node: BSTNode) -> Generator: + def in_order_traversal_generator(self, node: Optional[BSTNode]) -> Generator: + if not node: + raise StopIteration if node.left_child: yield from self.in_order_traversal_generator(node.left_child) yield node.val @@ -93,7 +95,7 @@ def print_tree(self): if self.root: self._print_tree(self.root) - def _print_tree(self, curr_node: BSTNode) -> None: + def _print_tree(self, curr_node: Optional[BSTNode]) -> None: if curr_node: self._print_tree(curr_node.left_child) print(curr_node.val) From b02cd2b645b05f9f39742ed5c05627c7e87ee50a Mon Sep 17 00:00:00 2001 From: miguelhx Date: Thu, 23 Sep 2021 10:00:35 -0700 Subject: [PATCH 5/6] Fix iterator return type error --- Python/chapter04/p02_minimal_tree/miguelHx.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Python/chapter04/p02_minimal_tree/miguelHx.py b/Python/chapter04/p02_minimal_tree/miguelHx.py index b91716fc..3a61b1ca 100644 --- a/Python/chapter04/p02_minimal_tree/miguelHx.py +++ b/Python/chapter04/p02_minimal_tree/miguelHx.py @@ -10,7 +10,7 @@ from dataclasses import dataclass from typing import Generic, TypeVar from typing import Optional, Protocol -from typing import Generator, List +from typing import Generator, List, Iterator T = TypeVar('T', bound='Comparable') @@ -37,7 +37,7 @@ class BSTNode(Generic[T]): def __str__(self): return f'Node ({self.id}), Left ID: {self.left_child.id}, Right ID: {self.right_child.id}' -class BSTIterator: +class BSTIterator(Iterator[T]): def __init__(self, root: Optional[BSTNode]): self.gen = self.in_order_traversal_generator(root) @@ -101,7 +101,7 @@ def _print_tree(self, curr_node: Optional[BSTNode]) -> None: print(curr_node.val) self._print_tree(curr_node.right_child) - def __iter__(self) -> Generator: + def __iter__(self) -> BSTIterator: return BSTIterator(self.root) From df37ef5592fad80e4b90ff05f652b915abff9f3a Mon Sep 17 00:00:00 2001 From: miguelhx Date: Thu, 23 Sep 2021 10:01:38 -0700 Subject: [PATCH 6/6] fix last mypy error --- Python/chapter04/p02_minimal_tree/miguelHx.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Python/chapter04/p02_minimal_tree/miguelHx.py b/Python/chapter04/p02_minimal_tree/miguelHx.py index 3a61b1ca..f94c7e12 100644 --- a/Python/chapter04/p02_minimal_tree/miguelHx.py +++ b/Python/chapter04/p02_minimal_tree/miguelHx.py @@ -15,7 +15,7 @@ T = TypeVar('T', bound='Comparable') -class Comparable(Protocol[T]): +class Comparable(Protocol): @abstractmethod def __lt__(self, other: T) -> bool: pass