-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathssd_test.ts
80 lines (67 loc) · 2.75 KB
/
ssd_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tfconv from '@tensorflow/tfjs-converter';
import * as tf from '@tensorflow/tfjs-core';
// tslint:disable-next-line: no-imports-from-dist
import {describeWithFlags, NODE_ENVS} from '@tensorflow/tfjs-core/dist/jasmine_util';
import {load} from './index';
describeWithFlags('ObjectDetection', NODE_ENVS, () => {
beforeEach(() => {
spyOn(tfconv, 'loadGraphModel').and.callFake(() => {
const model = {
executeAsync: (
x: tf.Tensor) => [tf.ones([1, 1917, 90]), tf.ones([1, 1917, 1, 4])],
dispose: () => true
};
return model;
});
});
it('ObjectDetection detect method should not leak', async () => {
const objectDetection = await load();
const x = tf.zeros([227, 227, 3]);
const numOfTensorsBefore = tf.memory().numTensors;
await objectDetection.detect(x as tf.Tensor3D, 1);
expect(tf.memory().numTensors).toEqual(numOfTensorsBefore);
});
it('ObjectDetection e2e should not leak', async () => {
const numOfTensorsBefore = tf.memory().numTensors;
const objectDetection = await load();
const x = tf.zeros([227, 227, 3]);
await objectDetection.detect(x as tf.Tensor3D, 1);
x.dispose();
objectDetection.dispose();
expect(tf.memory().numTensors).toEqual(numOfTensorsBefore);
});
it('ObjectDetection detect method should generate output', async () => {
const objectDetection = await load();
const x = tf.zeros([227, 227, 3]);
const data = await objectDetection.detect(x as tf.Tensor3D, 1);
expect(data).toEqual([{bbox: [227, 227, 0, 0], class: 'person', score: 1}]);
});
it('should allow custom model url', async () => {
await load({base: 'mobilenet_v1'});
expect(tfconv.loadGraphModel)
.toHaveBeenCalledWith(
'https://storage.googleapis.com/tfjs-models/' +
'savedmodel/ssd_mobilenet_v1/model.json');
});
it('should allow custom model url', async () => {
await load({modelUrl: 'https://test.org/model.json'});
expect(tfconv.loadGraphModel)
.toHaveBeenCalledWith('https://test.org/model.json');
});
});