@@ -51,9 +51,9 @@ The unit factorisation sends each $X \xto{f} Y$ to $X \xto{\id} X \xto{f} Y$.
5151``` agda
5252Ff-unit : Factorisation C
5353Ff-unit .S₀ (_ , _ , f) = record
54- { map = id
55- ; out = f
56- ; com = intror refl
54+ { left = id
55+ ; right = f
56+ ; factors = intror refl
5757 }
5858Ff-unit .S₁ f = record
5959 { sq₀ = id-comm-sym
@@ -107,10 +107,10 @@ module _ (F G : Factorisation C) where
107107
108108 _⊗ᶠᶠ_ : Factorisation C
109109 _⊗ᶠᶠ_ .S₀ (_ , _ , f) = record where
110- mid = G.Mid (F.ρ→ f)
111- map = G.λ→ (F.ρ→ f) ∘ F.λ→ f
112- out = G.ρ→ (F.ρ→ f)
113- com = sym (pulll (sym (G.factors _)) ∙ sym (F.factors _))
110+ mid = G.Mid (F.ρ→ f)
111+ left = G.λ→ (F.ρ→ f) ∘ F.λ→ f
112+ right = G.ρ→ (F.ρ→ f)
113+ factors = sym (pulll (sym (G.factors _)) ∙ sym (F.factors _))
114114
115115 _⊗ᶠᶠ_ .S₁ sq = record where
116116 open Interpolant (G .S₁ record { com = S₁ F sq .sq₁ })
@@ -152,10 +152,11 @@ Ff-tensor-functor .F₁ {X , Y} {X' , Y'} (f , g) .com α β h = Interpolant-pat
152152Ff-tensor-functor .F-id {_ , Y} = ext λ x y h → elimr refl ∙ annihilate Y (ext refl)
153153
154154Ff-tensor-functor .F-∘ {X , X'} {Y , Y'} {Z , Z'} f g = ext λ x y h →
155- pulll (sym (f .snd .comᶠᶠ _)) ∙∙ pullr (sym (g .snd .comᶠᶠ _)) ∙∙ sym
156- (ap₂ _∘_ (sym (f .snd .comᶠᶠ _)) (sym (g .snd .comᶠᶠ _))
157- ∙∙ pullr (extendl (sym (g .snd .comᶠᶠ _)))
158- ∙∙ ap₂ _∘_ refl (ap₂ _∘_ refl (collapse X' (ext (refl ,ₚ idl id)))))
155+ pulll (sym (f .snd .comᶠᶠ _))
156+ ∙∙ pullr (sym (g .snd .comᶠᶠ _))
157+ ∙∙ sym (ap₂ _∘_ (sym (f .snd .comᶠᶠ _)) (sym (g .snd .comᶠᶠ _))
158+ ∙∙ pullr (extendl (sym (g .snd .comᶠᶠ _)))
159+ ∙∙ ap₂ _∘_ refl (ap₂ _∘_ refl (collapse X' (ext (refl ,ₚ idl id)))))
159160```
160161
161162</details >
@@ -305,8 +306,7 @@ $\eta$ is an easy corollary of initiality for the unit factorisation.
305306 monoid→unit .is-natural x y f = ext (m.η .comᶠᶠ _ ,ₚ id-comm-sym)
306307
307308 monoid-unit-agrees = ext λ (x , y , f) →
308- intror refl
309- ∙ sym (m.η .sq₀ᶠᶠ f) ,ₚ refl
309+ intror refl ∙ sym (m.η .sq₀ᶠᶠ f) ,ₚ refl
310310```
311311
312312</details >
@@ -343,7 +343,6 @@ multiplication are fixed, this does not matter.
343343 monoid-on→rwfs-on .R-μ = monoid→mult
344344 monoid-on→rwfs-on .R-monad = done where abstract
345345 done : is-monad F.R-η monoid→mult
346- done = subst
347- (λ e → is-monad e monoid→mult) monoid-unit-agrees
346+ done = subst (λ e → is-monad e monoid→mult) monoid-unit-agrees
348347 monoid-mult-is-monad
349348```
0 commit comments