Skip to content

Commit 51efc3c

Browse files
committed
chore: match names with Factorisation
1 parent 3eaf600 commit 51efc3c

File tree

2 files changed

+25
-25
lines changed

2 files changed

+25
-25
lines changed

src/Cat/Displayed/Instances/Factorisations.lagda.md

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -48,17 +48,17 @@ pre-existing classes $M$ and $E$ for $m$ and $e$ to belong to.
4848
record Splitting {X Y : ⌞ C ⌟} (f : Hom X Y) : Type (o ⊔ ℓ) where
4949
no-eta-equality
5050
field
51-
{mid} : ⌞ C ⌟
52-
map : Hom X mid
53-
out : Hom mid Y
54-
com : f ≡ outmap
51+
{mid} : ⌞ C ⌟
52+
left : Hom X mid
53+
right : Hom mid Y
54+
factors : f ≡ rightleft
5555
```
5656

5757
<!--
5858
```agda
5959
{-# INLINE Splitting.constructor #-}
6060
61-
open Splitting public
61+
open Splitting
6262
```
6363
-->
6464

@@ -104,8 +104,8 @@ both the top and bottom rectangles commute.
104104
```agda
105105
field
106106
map : Hom (s .mid) (t .mid)
107-
sq₀ : t.map ∘ sq .top ≡ map ∘ s.map
108-
sq₁ : t.out ∘ map ≡ sq .bot ∘ s.out
107+
sq₀ : t.left ∘ sq .top ≡ map ∘ s.left
108+
sq₁ : t.right ∘ map ≡ sq .bot ∘ s.right
109109
```
110110

111111
In the literature on factorisation systems, the [[total category]] of
@@ -130,15 +130,16 @@ unquoteDecl H-Level-Interpolant = declare-record-hlevel 2 H-Level-Interpolant (q
130130
131131
module _ {o ℓ} {C : Precategory o ℓ} where
132132
open Precategory C
133+
open Splitting
133134
134135
Interpolant-pathp
135136
: ∀ {X X' Y Y'} {f : Hom X Y} {g : Hom X' Y'} {sq sq' : Homᵃ C f g} {p : sq ≡ sq'} {s : Splitting C f} {t : Splitting C g}
136137
→ {f : Interpolant C sq s t} {g : Interpolant C sq' s t}
137138
→ f .map ≡ g .map
138139
→ PathP (λ i → Interpolant C (p i) s t) f g
139140
Interpolant-pathp p i .map = p i
140-
Interpolant-pathp {p = q} {s} {t} {f} {g} p i .sq₀ = is-prop→pathp (λ i → Hom-set _ _ (t .map ∘ q i .top) (p i ∘ s .map)) (f .sq₀) (g .sq₀) i
141-
Interpolant-pathp {p = q} {s} {t} {f} {g} p i .sq₁ = is-prop→pathp (λ i → Hom-set _ _ (t .out ∘ p i) (q i .bot ∘ s .out)) (f .sq₁) (g .sq₁) i
141+
Interpolant-pathp {p = q} {s} {t} {f} {g} p i .sq₀ = is-prop→pathp (λ i → Hom-set _ _ (t .left ∘ q i .top) (p i ∘ s .left)) (f .sq₀) (g .sq₀) i
142+
Interpolant-pathp {p = q} {s} {t} {f} {g} p i .sq₁ = is-prop→pathp (λ i → Hom-set _ _ (t .right ∘ p i) (q i .bot ∘ s .right)) (f .sq₁) (g .sq₁) i
142143
143144
instance
144145
Extensional-Interpolant
@@ -214,7 +215,7 @@ module Factorisation {o ℓ} {C : Precategory o ℓ} (fac : Factorisation C) whe
214215
215216
module _ {X Y : ⌞ C ⌟} (f : Hom X Y) where
216217
open Splitting (Section.S₀ fac (X , Y , f))
217-
renaming (mid to Mid ; map to λ→ ; out to ρ→ ; com to factors)
218+
renaming (mid to Mid ; left to λ→ ; right to ρ→)
218219
public
219220
220221
module _ {u v w x : ⌞ C ⌟} {f : Hom u v} {g : Hom w x} (sq : Homᵃ C f g) where

src/Cat/Monoidal/Instances/Factorisations.lagda.md

Lines changed: 14 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -51,9 +51,9 @@ The unit factorisation sends each $X \xto{f} Y$ to $X \xto{\id} X \xto{f} Y$.
5151
```agda
5252
Ff-unit : Factorisation C
5353
Ff-unit .S₀ (_ , _ , f) = record
54-
{ map = id
55-
; out = f
56-
; com = intror refl
54+
{ left = id
55+
; right = f
56+
; factors = intror refl
5757
}
5858
Ff-unit .S₁ f = record
5959
{ sq₀ = id-comm-sym
@@ -107,10 +107,10 @@ module _ (F G : Factorisation C) where
107107
108108
_⊗ᶠᶠ_ : Factorisation C
109109
_⊗ᶠᶠ_ .S₀ (_ , _ , f) = record where
110-
mid = G.Mid (F.ρ→ f)
111-
map = G.λ→ (F.ρ→ f) ∘ F.λ→ f
112-
out = G.ρ→ (F.ρ→ f)
113-
com = sym (pulll (sym (G.factors _)) ∙ sym (F.factors _))
110+
mid = G.Mid (F.ρ→ f)
111+
left = G.λ→ (F.ρ→ f) ∘ F.λ→ f
112+
right = G.ρ→ (F.ρ→ f)
113+
factors = sym (pulll (sym (G.factors _)) ∙ sym (F.factors _))
114114
115115
_⊗ᶠᶠ_ .S₁ sq = record where
116116
open Interpolant (G .S₁ record { com = S₁ F sq .sq₁ })
@@ -152,10 +152,11 @@ Ff-tensor-functor .F₁ {X , Y} {X' , Y'} (f , g) .com α β h = Interpolant-pat
152152
Ff-tensor-functor .F-id {_ , Y} = ext λ x y h → elimr refl ∙ annihilate Y (ext refl)
153153
154154
Ff-tensor-functor .F-∘ {X , X'} {Y , Y'} {Z , Z'} f g = ext λ x y h →
155-
pulll (sym (f .snd .comᶠᶠ _)) ∙∙ pullr (sym (g .snd .comᶠᶠ _)) ∙∙ sym
156-
(ap₂ _∘_ (sym (f .snd .comᶠᶠ _)) (sym (g .snd .comᶠᶠ _))
157-
∙∙ pullr (extendl (sym (g .snd .comᶠᶠ _)))
158-
∙∙ ap₂ _∘_ refl (ap₂ _∘_ refl (collapse X' (ext (refl ,ₚ idl id)))))
155+
pulll (sym (f .snd .comᶠᶠ _))
156+
∙∙ pullr (sym (g .snd .comᶠᶠ _))
157+
∙∙ sym (ap₂ _∘_ (sym (f .snd .comᶠᶠ _)) (sym (g .snd .comᶠᶠ _))
158+
∙∙ pullr (extendl (sym (g .snd .comᶠᶠ _)))
159+
∙∙ ap₂ _∘_ refl (ap₂ _∘_ refl (collapse X' (ext (refl ,ₚ idl id)))))
159160
```
160161

161162
</details>
@@ -305,8 +306,7 @@ $\eta$ is an easy corollary of initiality for the unit factorisation.
305306
monoid→unit .is-natural x y f = ext (m.η .comᶠᶠ _ ,ₚ id-comm-sym)
306307
307308
monoid-unit-agrees = ext λ (x , y , f) →
308-
intror refl
309-
∙ sym (m.η .sq₀ᶠᶠ f) ,ₚ refl
309+
intror refl ∙ sym (m.η .sq₀ᶠᶠ f) ,ₚ refl
310310
```
311311

312312
</details>
@@ -343,7 +343,6 @@ multiplication are fixed, this does not matter.
343343
monoid-on→rwfs-on .R-μ = monoid→mult
344344
monoid-on→rwfs-on .R-monad = done where abstract
345345
done : is-monad F.R-η monoid→mult
346-
done = subst
347-
(λ e → is-monad e monoid→mult) monoid-unit-agrees
346+
done = subst (λ e → is-monad e monoid→mult) monoid-unit-agrees
348347
monoid-mult-is-monad
349348
```

0 commit comments

Comments
 (0)