Skip to content

Commit 478eaba

Browse files
author
Two Dev
committed
v1.0.6
1 parent 3ca5945 commit 478eaba

File tree

4 files changed

+44
-44
lines changed

4 files changed

+44
-44
lines changed

README.md

+14-14
Original file line numberDiff line numberDiff line change
@@ -26,10 +26,10 @@ With multilingual capabilities and advanced configuration options, it ensures pr
2626
### Learning Process and Acknowledgements
2727
As a newbie, I created Gemma Template based on what I read and learned from the following sources:
2828

29-
- Google Cookbook: [Advanced Prompting Techniques](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/Advanced_Prompting_Techniques.ipynb)
30-
- Google Cookbook: [Finetune_with_LLaMA_Factory](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/Finetune_with_LLaMA_Factory.ipynb)
31-
- Google Cookbook: [Finetuning Gemma for Function Calling](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/Finetuning_Gemma_for_Function_Calling.ipynb)
32-
- Alpaca: [Alpaca Lora Documention](https://github.com/tloen/alpaca-lora)
29+
- Google Gemma Cookbook: [Advanced Prompting Techniques](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/Advanced_Prompting_Techniques.ipynb)
30+
- Google Gemma Cookbook: [Finetune_with_LLaMA_Factory](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/Finetune_with_LLaMA_Factory.ipynb)
31+
- Google Gemma Cookbook: [Finetuning Gemma for Function Calling](https://github.com/google-gemini/gemma-cookbook/blob/main/Gemma/Finetuning_Gemma_for_Function_Calling.ipynb)
32+
- Alpaca: [Alpaca Lora Documentation](https://github.com/tloen/alpaca-lora)
3333
- Unsloth: [Finetune Llama 3.2, Mistral, Phi-3.5, Qwen 2.5 & Gemma 2-5x faster with 80% less memory!](https://github.com/unslothai/unsloth)
3434

3535

@@ -66,7 +66,7 @@ It enhances text readability, aligns with linguistic nuances, and preserves orig
6666
- Supports advanced response structure format customization.
6767
- Compatible with other models such as LLaMa.
6868
- Enhances dynamic prompts using Round-Robin loops.
69-
- Outputs multiple formats such as Alpaca, GPT, and STF text.
69+
- Outputs multiple formats such as Text, Alpaca and GPT conversions.
7070

7171
**Installation**
7272
----------------
@@ -125,7 +125,7 @@ print(response)
125125
126126
You are a multilingual professional writer.
127127
128-
Rewrite the text with a more engaging and creative tone. Use vivid imagery, descriptive language, and a conversational style to captivate the reader.
128+
Rewrite the text to be more search engine friendly. Incorporate relevant keywords naturally, improve readability, and ensure it aligns with SEO best practices.
129129
130130
# Role:
131131
You are a highly skilled professional content writer, linguistic analyst, and multilingual expert specializing in structured writing and advanced text processing.
@@ -156,7 +156,7 @@ Text Analysis 3: These are common English words, indicating the text is in Engli
156156
157157
Example 2: Bigrams (two words)
158158
technology as => English
159-
Text Analysis 2: Frequent bigrams in Vietnamese confirm the language context.
159+
Text Analysis 2: Frequent bigrams in English confirm the language context.
160160
161161
Example 3: Trigrams (three words)
162162
technology as Gemini => English
@@ -167,17 +167,17 @@ The linguistic analysis confirms the text is predominantly in English. Consequen
167167
168168
# Response Structure Format:
169169
You must follow the response structure:
170-
**Custom Title (Title):** Rewrite the title to make it concise, memorable, and optimized for SEO.
171-
**Custom Description (Description):** Write description of the article in one or two sentences while focusing on reader benefits and engage curiosity.
172-
**Custom Article (Article):** Rewrite this content to be SEO-friendly. Include relevant tags, optimize the title and subheadings, and ensure the text flows naturally for search engines and readers.
173-
**Custom Main Points (Main Points):** Simplify the original key points to make them clearer and more reader-friendly.
174-
**Custom Categories (Categories):** Assign appropriate categories to the article based text or target audience.
175-
**Custom Tags (Tags):** Create tags to include relevant keywords. Ensure the tags align with popular search queries.
170+
**Custom Title (Title):** Rewrite the title to reflect the main keyword and topic.
171+
**Custom Description (Meta Description):** Rewrite the description with a bold claim or statistic to grab attention.
172+
**Custom Article (Edit Article):** Reimagine this article with a more engaging and creative tone. Add metaphors, analogies, or storytelling elements to make it more captivating for readers.
173+
**Custom Main Points (Highlights):** Summarize the main ideas into concise, actionable key points for added context to make them more engaging.
174+
**Custom Categories (Topics):** Assign appropriate categories to the article based text or target audience.
175+
**Custom Tags (Keywords):** Focus use tags that reflect the article’s subtopics or themes for better SEO.
176176
177177
By adhering to this format, the response will maintain linguistic integrity while enhancing professionalism, structure and alignment with user expectations.
178178
179179
# Text:
180-
Gemma open models are built from _____ same research _____ technology as Gemini models. Gemma 2 comes in 2B, 9B _____ 27B and Gemma 1 comes in 2B and 7B sizes.
180+
Gemma open models are built from the same research _____ technology as Gemini models. Gemma 2 comes in 2B, 9B and 27B _____ Gemma 1 comes in 2B _____ 7B sizes.
181181
182182
<end_of_turn>
183183
<start_of_turn>model

gemma_template/__version__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,5 +3,5 @@
33
__url__ = "https://github.com/thewebscraping/gemma-template"
44
__author__ = "Tu Pham"
55
__author_email__ = "[email protected]"
6-
__version__ = "0.1.5"
6+
__version__ = "0.1.6"
77
__license__ = "Apache-2.0"

gemma_template/constants.py

+12-12
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,17 @@
2323
2424
"""
2525

26+
USER_TEMPLATE = """{system_template}
27+
28+
{prompt_template}
29+
30+
{instruction_template}
31+
{structure_template}
32+
# Text:
33+
{document}
34+
35+
"""
36+
2637
GEMMA_PROMPT_TEMPLATE = """<start_of_turn>user
2738
2839
{user_template}<end_of_turn>
@@ -55,7 +66,7 @@
5566
5667
Example 2: Bigrams (two words)
5768
{bigrams}
58-
Text Analysis 2: Frequent bigrams in Vietnamese confirm the language context.
69+
Text Analysis 2: Frequent bigrams in {language} confirm the language context.
5970
6071
Example 3: Trigrams (three words)
6172
{trigrams}
@@ -72,17 +83,6 @@
7283
By adhering to this format, the response will maintain linguistic integrity while enhancing professionalism, structure and alignment with user expectations.
7384
""" # noqa: E501
7485

75-
USER_TEMPLATE = """{system_template}
76-
77-
{prompt_template}
78-
79-
{instruction_template}
80-
{structure_template}
81-
# Text:
82-
{document}
83-
84-
"""
85-
8686
VIETNAMESE_INSTRUCTION_TEMPLATE = """# Vai trò:
8787
Bạn là một biên tập viên nội dung chuyên nghiệp, nhà phân tích ngôn ngữ và chuyên gia đa ngôn ngữ, chuyên về viết có cấu trúc và xử lý văn bản nâng cao.
8888

gemma_template/models.py

+17-17
Original file line numberDiff line numberDiff line change
@@ -113,12 +113,12 @@ class StructureField(BaseTemplate):
113113
""" # noqa: 501
114114

115115
_default_tag_positions: ClassVar[dict[str, int]] = {
116-
"title": 0,
117-
"description": 0,
118-
"document": 0,
119-
"main_points": 0,
120-
"categories": 0,
121-
"tags": 0,
116+
"title": -1,
117+
"description": -1,
118+
"document": -1,
119+
"main_points": -1,
120+
"categories": -1,
121+
"tags": -1,
122122
}
123123
_default_tag: ClassVar[dict] = {
124124
"title": ["Title"],
@@ -237,7 +237,7 @@ class Template(BaseTemplate):
237237
238238
Example 2: Bigrams (two words)
239239
technology as => English
240-
Text Analysis 2: Frequent bigrams in Vietnamese confirm the language context.
240+
Text Analysis 2: Frequent bigrams in English confirm the language context.
241241
242242
Example 3: Trigrams (three words)
243243
technology as Gemini => English
@@ -249,16 +249,16 @@ class Template(BaseTemplate):
249249
# Response Structure Format:
250250
You must follow the response structure:
251251
**Custom Title (Title):** Rewrite the title to reflect the main keyword and topic.
252-
**Custom Description (Description):** Rewrite the description with a bold claim or statistic to grab attention.
253-
**Custom Article (Article):** Rewrite this content to be SEO-friendly. Include relevant tags, optimize the title and subheadings, and ensure the text flows naturally for search engines and readers.
254-
**Custom Main Points (Main Points):** Simplify the original key points to make them clearer and more reader-friendly.
255-
**Custom Categories (Categories):** Assign appropriate categories to the article based text or target audience.
256-
**Custom Tags (Tags):** Focus use tags that reflect the article’s subtopics or themes for better SEO.
252+
**Custom Description (Meta Description):** Rewrite the description with a bold claim or statistic to grab attention.
253+
**Custom Article (Edit Article):** Reimagine this article with a more engaging and creative tone. Add metaphors, analogies, or storytelling elements to make it more captivating for readers.
254+
**Custom Main Points (Highlights):** Summarize the main ideas into concise, actionable key points for added context to make them more engaging.
255+
**Custom Categories (Topics):** Assign appropriate categories to the article based text or target audience.
256+
**Custom Tags (Keywords):** Focus use tags that reflect the article’s subtopics or themes for better SEO.
257257
258258
By adhering to this format, the response will maintain linguistic integrity while enhancing professionalism, structure and alignment with user expectations.
259259
260260
# Text:
261-
Gemma open models are _____ from the same research and technology as Gemini models. Gemma 2 comes in 2B, 9B _____ 27B and Gemma 1 comes in 2B _____ 7B sizes.
261+
Gemma open models are built from the same research _____ technology as Gemini models. Gemma 2 comes in 2B, 9B and 27B _____ Gemma 1 comes in 2B _____ 7B sizes.
262262
263263
<end_of_turn>
264264
<start_of_turn>model
@@ -691,7 +691,7 @@ def get_user_kwargs(
691691
if structure_template_str:
692692
if isinstance(structure_template, Callable):
693693
kwargs.setdefault(
694-
"structure_attrs", self._get_structure_attrs(**kwargs)
694+
"structure_attrs", self._get_structure_attrs(self._structure_items, **kwargs)
695695
)
696696
structure_template_str = structure_template(self, **kwargs)
697697
else:
@@ -1077,7 +1077,7 @@ def _formatting_structure_user_fn(
10771077
**kwargs,
10781078
) -> str:
10791079
prompts = []
1080-
for field, data in self._get_structure_attrs(**kwargs).items():
1080+
for field, data in self._get_structure_attrs(self._structure_items, **kwargs).items():
10811081
if excluded_fields and field in excluded_fields:
10821082
continue
10831083

@@ -1125,13 +1125,13 @@ def _formatting_structure_model_fn(
11251125
prompts.append(template)
11261126
return "\n\n".join(prompts).strip()
11271127

1128-
def _get_structure_attrs(self, **kwargs):
1128+
def _get_structure_attrs(self, structure_data: dict, **kwargs):
11291129
mapping = {}
11301130
for field, (
11311131
bold_value,
11321132
custom_value,
11331133
default_value,
1134-
) in self._structure_items.items():
1134+
) in structure_data.items():
11351135
if field in kwargs:
11361136
mapping[field] = {
11371137
"prompt": self._get_value_by_position(field),

0 commit comments

Comments
 (0)