-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNew Code_CNN_062621.py
481 lines (347 loc) · 19.4 KB
/
New Code_CNN_062621.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#from __future__ import absolute_import, division, print_function, unicode_literals
import os
import csv
import glob
import time
import pathlib
import pandas as pd
import numpy as np
import tensorflow as tf
import seaborn as sns
import matplotlib.pyplot as plt
from tensorflow import compat
from keras.preprocessing import image
import matplotlib.image as mpimg
from tensorflow.keras.models import Sequential
from tensorflow.keras.applications import Xception
from tensorflow.keras.utils import multi_gpu_model
from tensorflow.keras.callbacks import TensorBoard,EarlyStopping
from tensorflow.keras import optimizers
from tensorflow.keras.models import Model
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.callbacks import TensorBoard
from keras.preprocessing.text import Tokenizer
from tensorflow.keras.layers import Dense,GlobalAveragePooling2D
from keras.applications.mobilenet import preprocess_input
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras_preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import MobileNet
from keras.applications.resnet import ResNet152
############## This model uses tensorflow-GPU 2.3.0 #################
#path = (r'https://drive.google.com/drive/folders/1LS7mECdPTtcCmSUcOVKMOnsCndwHx-Dh')
##train_image_count = len(list(train_dir.glob('*/*.tif')))
##val_image_count = len(list(val_dir.glob('*/*.tif')))
##test_image_count = len(list(test_dir.glob('*/*.tif')))
def imageDimensions():
dim1 = []
dim2 = []
for root, dirs, files in os.walk(train_dir, topdown=False):
for name in files:
try:
img = imread(os.path.join(root, name))
d1,d2,colors = img.shape
#print(d1,d2)
dim1.append(d1)
dim2.append(d2)
except: pass
#print(np.mean(dim1))
#print(np.mean(dim2))
#sns.jointplot(x=dim1,y=dim2)
#plt.show()
return int(np.mean(dim1)),int(np.mean(dim2))
#print(imageDimensions()[0])
class dataSetupRun(object):
def __init__(self,architecture,directoryType,batch_size,path,trainDir,trainLabels,target): #,valDir=None,testDir=None):
train_dir = os.path.join(path, trainDir)
#val_dir = os.path.join(path, valDir)
#test_dir = os.path.join(path, testDir)
self.train_dir = pathlib.Path(train_dir)
print(self.train_dir)
#self.val_dir = pathlib.Path(val_dir)
#self.test_dir = pathlib.Path(test_dir)
os.chdir(path)
self.path = path
self.target = target
self.preTrainedModel = 'imagenet' # pretrained model used for classification
self.denseActivationFunc = 'relu' # activation function used with in dense layers
self.predsActivationFunc = 'softmax' # activation function used to measure loss
self.optimizerFunc = 'adagrad' # optimizer for backpropagation
self.classMode = 'categorical' # the kind of machine learning to be done
self.batch_size = batch_size # the number of images included processed at once for classification
self.img_height = 224 #imageDimensions()[0]
self.img_width = 224 #imageDimensions()[0]
self.total_train = len(os.listdir(self.train_dir))
print(self.total_train)
#self.total_val = len(list(val_dir.glob('*/*.tif')))
self.architecture = architecture
self.epochs = 2000 # the number of iterations through training set
self.bands = 3 # color image has 3 color bands, red, green, blue
self.directoryType = directoryType
self.steps_per_epoch=self.total_train // self.batch_size
self.trainLabels = pd.read_csv(trainLabels)
self.trainLabels
self.trainLabels[self.target] = self.trainLabels[self.target].astype(str)
#self.testLabels = testLabels
self.trainLabels.loc[:, self.trainLabels.columns != self.target] = (self.trainLabels.loc[:, self.trainLabels.columns
!= self.target].apply(lambda x: x == x.max(),
axis=1).astype(int))
print(self.trainLabels)
## self.trainLabels[['Class1.1','Class1.2','Class1.3','Class2.1','Class2.2','Class3.1','Class3.2',
## 'Class4.1','Class4.2','Class5.1','Class5.2','Class5.3','Class5.4','Class6.1','Class6.2',
## 'Class7.1','Class7.2','Class7.3','Class8.1','Class8.2','Class8.3','Class8.4','Class8.5',
## 'Class8.6','Class8.7','Class9.1','Class9.2','Class9.3','Class10.1','Class10.2','Class10.3',
## 'Class11.1','Class11.2','Class11.3','Class11.4','Class11.5','Class11.6']] = self.trainLabels[['Class1.1',
## 'Class1.2','Class1.3','Class2.1','Class2.2','Class3.1','Class3.2',
## 'Class4.1','Class4.2','Class5.1','Class5.2','Class5.3','Class5.4','Class6.1','Class6.2',
## 'Class7.1','Class7.2','Class7.3','Class8.1','Class8.2','Class8.3','Class8.4','Class8.5',
## 'Class8.6','Class8.7','Class9.1','Class9.2','Class9.3','Class10.1','Class10.2','Class10.3',
## 'Class11.1','Class11.2','Class11.3','Class11.4','Class11.5','Class11.6']].apply(lambda x: x == x.max(), axis=1).astype(int)
#print(self.trainLabels.head)
## go1 = dataSetupRun(ResNet152,'Flow',8,
## r'E:\Deep Learning T-Flow\Galaxy data',
## 'images_training_rev1',
## #'images_test_rev1',
## 'training_solutions_rev1.csv',
## 'GalaxyID')
self.trainLabels['dataID.jpg'] = '.jpg'
self.trainLabels[target] = self.trainLabels[target].astype('string')+self.trainLabels['dataID.jpg']
self.trainLabels = self.trainLabels.drop(['dataID.jpg'],1)
name = 'LandUsePredict-cnn-64x2-{}'.format(time.time())
tensorboard = TensorBoard(log_dir=self.path+'\\logs\\{}'.format(name),
histogram_freq=1,
write_images=True)
## if self.architecture == 'ResNet152':
## from keras.applications.resnet import ResNet152
##
## elif self.architecture == 'MobileNet':
## from tensorflow.keras.applications import MobileNet
@tf.function(experimental_compile=True)
def arrangeData(self):
# training image generator. in this generator I am modifying the training images each iteration
# so as to prevent overfitting during training. validation images are not modified.
train_Image_generator = ImageDataGenerator(rescale=1./255, zoom_range=0.3, rotation_range=6,
width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,
horizontal_flip=True, fill_mode='nearest')
# validation image generator. these images are not modified.
val_Image_generator = ImageDataGenerator(rescale=1./255, validation_split=0.25)
# test image generator. these images are not modified.
test_Image_generator = ImageDataGenerator(rescale=1./255)
if self.directoryType == 'FlowFromDirectory':
# generating the training images and converting them into data usable by the classification algorithm
self.train_data_gen = train_Image_generator.flow_from_directory(batch_size=self.batch_size,
directory=train_dir,
shuffle=True, # images will be shuffled each iteration
color_mode="rgb",
target_size=(self.img_height, self.img_width),
class_mode=self.classMode)
# generating the validation images
self.validation_data_gen = val_Image_generator.flow_from_directory(batch_size=self.batch_size,
directory=val_dir,
color_mode="rgb",
target_size=(self.img_height, self.img_width),
class_mode=self.classMode)
# generating the test images which are seperate from train and validation images
# which the algorithm will have not seen
self.test_data_gen = test_Image_generator.flow_from_directory(directory=test_dir,
color_mode="rgb",
target_size=(self.img_height, self.img_width),
class_mode=self.classMode,
shuffle=False)
#save_to_dir = path+'\\testImagesPredicted',
#save_format = 'jpeg')
elif self.directoryType == 'Flow':
self.train_data_dataframe = train_Image_generator.flow_from_dataframe(
dataframe = self.trainLabels,
directory = self.train_dir,
validate_filenames=False,
x_col = self.target,
y_col = list(self.trainLabels.loc[:, self.trainLabels.columns != self.target]),
class_mode = 'raw',
subset = 'training',
batch_size = self.batch_size,
target_size = (self.img_height, self.img_width),
shuffle=True)
self.val_data_dataframe = val_Image_generator.flow_from_dataframe(
dataframe = self.trainLabels,
directory = self.train_dir,
validate_filenames=False,
x_col = self.target,
y_col = list(self.trainLabels.loc[:, self.trainLabels.columns != self.target]),
class_mode = 'raw',
subset = 'validation',
batch_size = self.batch_size,
target_size = (self.img_height, self.img_width),
shuffle=True)
def modelSetupRun(self):
self.arrangeData()
# assigning the pre-trained model MobileNet to the variable base_model
base_model=self.architecture(input_shape=(self.img_height,self.img_width,self.bands),\
weights=self.preTrainedModel,include_top=False)
denseLayers = base_model.output # brining in the output from the base_model into dense layers
denseLayers = Flatten()(denseLayers)
if self.directoryType == 'FlowFromDirectory':
# getting the number of labels in image data
labels = (self.train_data_gen.class_indices)
labels = dict((v,k) for k,v in labels.items())
preds = Dense(len(labels),activation = self.predsActivationFunc)(denseLayers) #final dense layer with softmax activation
elif self.directoryType == 'Flow':
labels = self.trainLabels.drop('GalaxyID',1)
print(list(labels))
print('--------------------------------------------------')
preds = Dense(len(list(labels)),activation = self.predsActivationFunc)(denseLayers) #final dense layer with softmax activation
#print(preds)
#self.model.trainable = False # setting the pretrained model to be trainable
for layer in base_model.layers:
layer.trainable = True
pd.set_option('max_colwidth', None)
layers = [(layer, layer.name, layer.trainable) for layer in base_model.layers]
print(pd.DataFrame(layers, columns=['Layer Type', 'Layer Name', 'Layer Trainable']))
self.model = Model(inputs=base_model.input, outputs=preds)
self.model.compile( # compiling the model using adagrad optimizer
loss="sparse_categorical_crossentropy",
optimizer=self.optimizerFunc,
metrics=["accuracy"])
#model.summary()
return self.model
def runTrainCompile(self):
self.modelSetupRun()
self.train_data_dataframe = np.asarray(self.train_data_dataframe).astype(np.float32)
early_stop = EarlyStopping(monitor='val_loss',patience=2)
# training the model and doing initial evalution using validation data
if self.directoryType == 'FlowFromDirectory':
self.history = self.model.fit(
self.train_data_gen,
epochs=self.epochs,
validation_data=self.validation_data_gen,
callbacks = [TensorBoard, early_stop]
)
elif self.directoryType == 'Flow':
self.history = self.model.fit(
self.trainLabels,
epochs=self.epochs,
validation_data=self.val_data_dataframe,
callbacks = [TensorBoard, early_stop]
)
#self.model.save(r'E:\DeepLearningImages\Deep Learning Code and Images\savedClassModel.h5')
losses = pd.DataFrame(self.model.history.history)
print(losses)
losses[['loss','val_loss']].plot()
plt.show()
def performanceViz(self):
self.runTrainCompile()
history_dict = self.history.history
acc = history_dict['acc']
val_acc = history_dict['val_acc']
loss = history_dict['loss']
val_loss = history_dict['val_loss']
compat.v1.RunOptions(report_tensor_allocations_upon_oom = True)
print(acc)
epochs_range = range(self.epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
def testDataPredictionsProbs(self,index_):
preds = []
labelsList = []
self.arrangeData()
savedModel = tf.keras.models.load_model('savedClassModel.h5')
loss,acc = savedModel.evaluate(self.test_data_gen)
predict = savedModel.predict(self.test_data_gen)
labels = (self.test_data_gen.class_indices)
labels = dict((v,k) for k,v in labels.items())
predicted_class_indices=np.argmax(predict,axis=1)
self.predictions = [labels[k] for k in predicted_class_indices]
self.filenames=self.test_data_gen.filenames
labelsPredDict = dict(zip(self.filenames,self.predictions))
for key,value in labelsPredDict.items() :
preds.append([key,value])
print(preds[index_])
print(predict[index_])
my_cmap = plt.get_cmap('tab20c')
plt.figure(figsize=(15,10))
plt.tight_layout()
plot = plt.bar(labels.values(),predict[index_],data=predict[index_],log=True,color=my_cmap.colors)
plt.xticks([])
plt.ylabel('Log Probabilities')
plt.title('Class prediction probabilities: '+str(preds[index_]))
plt.legend(plot,[i for i in labels.values()],loc="upper left")
plt.show()
def testDataPredictionsWrite(self):
self.arrangeData()
savedModel = tf.keras.models.load_model('savedClassModel.h5')
loss = savedModel.evaluate(self.test_data_gen)
predict = savedModel.predict(self.test_data_gen)
predicted_class_indices=np.argmax(predict,axis=1)
labels = (self.test_data_gen.class_indices)
labels = dict((v,k) for k,v in labels.items())
self.predictions = [labels[k] for k in predicted_class_indices]
self.filenames=self.test_data_gen.filenames
results=pd.DataFrame({'Filename':self.filenames,'Predictions':self.predictions})
print(results)
results.to_csv('CNN_Results_Output.csv', sep='\t')
#print(imageDimensions())
go1 = dataSetupRun(ResNet152,'Flow',8,
r'E:\Deep Learning T-Flow\Galaxy data',
'images_training_rev1',
#'images_test_rev1',
'training_solutions_rev1.csv',
'GalaxyID')
go1.runTrainCompile()
#go.arrangeData()
#go.modelSetupRun()
#go.testDataPredictionsProbs(356)
#go.testDataPredictionsWrite()
#go.performanceViz()
def prodImagesOnSavedModel(path,directory,image):
preds = []
labelsList = []
plt.ion
labelsIndex = np.arange(0,21,1)
labelsAll = ['agricultural','airplane','baseballdiamond','beach',
'buildings','chaperral','denseresidential','forest','freeway',
'golfcourse','harbor','intersection','mediumresidential',
'mobilehomepark','overpass','parkinglot','river','runway',
'sparseresidential','storagetanks','tenniscourt']
labelsDict = dict(zip(labelsIndex,labelsAll))
print(labelsDict)
prod_dir = os.path.join(path,directory)
prod_dir = pathlib.Path(prod_dir)
prod_image_count = len(list(prod_dir.glob('*/*.tif')))
prod_Image_generator = ImageDataGenerator(rescale=1./255)
prod_data_gen = prod_Image_generator.flow_from_directory(directory=prod_dir,
color_mode="rgb",
target_size=(224,224),
class_mode='raw',
shuffle=False)
savedModel = tf.keras.models.load_model('savedClassModel.h5')
labels = (prod_data_gen.class_indices)
labels = dict((v,k) for k,v in labelsDict.items())
predict = savedModel.predict(prod_data_gen)
predicted_class_indices = np.argmax(predict,axis=1)
predicted_dict = {k: labelsDict[k] for k in labelsDict.keys() & set(predicted_class_indices)}
print(predicted_dict)
filenames = prod_data_gen.filenames
index_ = filenames.index(image)
my_cmap = plt.get_cmap('tab20c')
plt.figure(figsize=(18, 9))
plt.subplot(1, 2, 1)
plt.title('Image chosen by user: '+str(filenames[index_]))
img = mpimg.imread(str(prod_dir)+'\\'+str(image))
plt.imshow(img)
plt.subplot(1, 2, 2)
plot = plt.bar(labels.values(),predict[index_],data=predict[index_],log=True,color=my_cmap.colors)
plt.xticks([])
plt.ylabel('Log Probabilities')
plt.title('Class prediction probabilities: '+str(filenames[index_]))
plt.legend(plot,[i for i in labels.keys()],loc='center left', bbox_to_anchor=(.99, 0.5))
#plt.show()
#prodImagesOnSavedModel(r'C:\Users\moose_m7y2ik3\Desktop','prod','dir1\\tenniscourt99.tif')