-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustomdetectoropencv.cpp
496 lines (335 loc) · 16 KB
/
customdetectoropencv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*
* Copyright (C) 2015-2018 Savoir-faire Linux Inc.
*
* Author: Timothée Menais <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <fstream>
#include <utility>
#include <vector>
#include <iostream>
#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/cc/client/client_session.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"
#include <opencv2/objdetect.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
// These are all common classes it's handy to reference with no namespace.
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;
using tensorflow::uint8;
using namespace std;
using namespace cv;
// Takes a file name, and loads a list of labels from it, one per line, and
// returns a vector of the strings. It pads with empty strings so the length
// of the result is a multiple of 16, because our model expects that.
std::vector<std::string> ReadLabelsFile(const std::string file_name) {
std::ifstream infile(file_name);
std::string label;
std::vector<std::string> labels;
if(infile.is_open()){
while(std::getline(infile, label)){
labels.push_back(label);
}
infile.close();
}
// size_t i =0;
// for (int i = 0; i < labels.size(); ++i)
// {
// std::cout<< labels.at(i) << " " << i+1 << std::endl;
// //RING_WARN("%s", labels.at(i).c_str());
// }
return labels;
}
static Status ReadEntireFile(tensorflow::Env* env, const string& filename,
Tensor* output) {
tensorflow::uint64 file_size = 0;
TF_RETURN_IF_ERROR(env->GetFileSize(filename, &file_size));
string contents;
contents.resize(file_size);
std::unique_ptr<tensorflow::RandomAccessFile> file;
TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename, &file));
tensorflow::StringPiece data;
TF_RETURN_IF_ERROR(file->Read(0, file_size, &data, &(contents)[0]));
if (data.size() != file_size) {
return tensorflow::errors::DataLoss("Truncated read of '", filename,
"' expected ", file_size, " got ",
data.size());
}
output->scalar<string>()() = data.ToString();
return Status::OK();
}
// Given an image file name, read in the data, try to decode it as an image,
// resize it to the requested size, and then scale the values as desired.
Status ReadTensorFromImageFile(const string& file_name, const int input_height,
const int input_width, const float input_mean,
const float input_std,
std::vector<Tensor>* out_tensors) {
auto root = tensorflow::Scope::NewRootScope();
using namespace ::tensorflow::ops; // NOLINT(build/namespaces)
string input_name = "file_reader";
string output_name = "normalized";
// read file_name into a tensor named input
Tensor input(tensorflow::DT_STRING, tensorflow::TensorShape());
TF_RETURN_IF_ERROR(
ReadEntireFile(tensorflow::Env::Default(), file_name, &input));
// use a placeholder to read input data
auto file_reader =
Placeholder(root.WithOpName("input"), tensorflow::DataType::DT_STRING);
std::vector<std::pair<string, tensorflow::Tensor>> inputs = {
{"input", input},
};
// Now try to figure out what kind of file it is and decode it.
const int wanted_channels = 3;
tensorflow::Output image_reader;
if (tensorflow::str_util::EndsWith(file_name, ".png")) {
image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,
DecodePng::Channels(wanted_channels));
} else if (tensorflow::str_util::EndsWith(file_name, ".gif")) {
// gif decoder returns 4-D tensor, remove the first dim
image_reader =
Squeeze(root.WithOpName("squeeze_first_dim"),
DecodeGif(root.WithOpName("gif_reader"), file_reader));
} else {
// Assume if it's neither a PNG nor a GIF then it must be a JPEG.
image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,
DecodeJpeg::Channels(wanted_channels));
}
// Now cast the image data to float so we can do normal math on it.
// auto float_caster =
// Cast(root.WithOpName("float_caster"), image_reader, tensorflow::DT_FLOAT);
auto uint8_caster = Cast(root.WithOpName("uint8_caster"), image_reader, tensorflow::DT_UINT8);
// The convention for image ops in TensorFlow is that all images are expected
// to be in batches, so that they're four-dimensional arrays with indices of
// [batch, height, width, channel]. Because we only have a single image, we
// have to add a batch dimension of 1 to the start with ExpandDims().
auto dims_expander = ExpandDims(root.WithOpName("dim"), uint8_caster, 0);
// Bilinearly resize the image to fit the required dimensions.
// auto resized = ResizeBilinear(
// root, dims_expander,
// Const(root.WithOpName("size"), {input_height, input_width}));
// Subtract the mean and divide by the scale.
// auto div = Div(root.WithOpName(output_name), Sub(root, dims_expander, {input_mean}),
// {input_std});
//cast to int
//auto uint8_caster = Cast(root.WithOpName("uint8_caster"), div, tensorflow::DT_UINT8);
// This runs the GraphDef network definition that we've just constructed, and
// returns the results in the output tensor.
tensorflow::GraphDef graph;
TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));
std::unique_ptr<tensorflow::Session> session(
tensorflow::NewSession(tensorflow::SessionOptions()));
TF_RETURN_IF_ERROR(session->Create(graph));
TF_RETURN_IF_ERROR(session->Run({inputs}, {"dim"}, {}, out_tensors));
return Status::OK();
}
// Status ReadTensorFromBuffer(const float[], const int input_height,
// const int input_width,
// std::vector<Tensor>* out_tensors) {
// auto file_reader =
// Placeholder(root.WithOpName("input"), tensorflow::DataType::DT_STRING);
// std::vector<std::pair<string, tensorflow::Tensor>> inputs = {
// {"input", input},
// };
// auto uint8_caster = Cast(root.WithOpName("uint8_caster"), image_reader, tensorflow::DT_UINT8);
// }
// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
Status LoadGraph(const string& graph_file_name,
std::unique_ptr<tensorflow::Session>* session) {
tensorflow::GraphDef graph_def;
Status load_graph_status =
ReadBinaryProto(tensorflow::Env::Default(), graph_file_name, &graph_def);
if (!load_graph_status.ok()) {
return tensorflow::errors::NotFound("Failed to load compute graph at '",
graph_file_name, "'");
}
session->reset(tensorflow::NewSession(tensorflow::SessionOptions()));
Status session_create_status = (*session)->Create(graph_def);
if (!session_create_status.ok()) {
return session_create_status;
}
return Status::OK();
}
Status SaveImage(const Tensor& tensor, const string& file_path) {
LOG(INFO) << "Saving image to " << file_path;
CHECK(tensorflow::str_util::EndsWith(file_path, ".png"))
<< "Only saving of png files is supported.";
auto root = tensorflow::Scope::NewRootScope();
using namespace ::tensorflow::ops; // NOLINT(build/namespaces)
string encoder_name = "encode";
string output_name = "file_writer";
tensorflow::Output image_encoder =
EncodePng(root.WithOpName(encoder_name), tensor);
tensorflow::ops::WriteFile file_saver = tensorflow::ops::WriteFile(
root.WithOpName(output_name), file_path, image_encoder);
tensorflow::GraphDef graph;
TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));
std::unique_ptr<tensorflow::Session> session(
tensorflow::NewSession(tensorflow::SessionOptions()));
TF_RETURN_IF_ERROR(session->Create(graph));
std::vector<Tensor> outputs;
TF_RETURN_IF_ERROR(session->Run({}, {}, {output_name}, &outputs));
return Status::OK();
}
float colors[6][3] = { {255,0,255}, {0,0,255},{0,255,255},{0,255,0},{255,255,0},{255,0,0} };
float get_color_box(int c, int x, int max)
{
float ratio = ((float)x/max)*5;
int i = floor(ratio);
int j = ceil(ratio);
ratio -= i;
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
//printf("%f\n", r);
return r;
}
int main(int argc, char* argv[]) {
// These are the command-line flags the program can understand.
// They define where the graph and input data is located, and what kind of
// input the model expects. If you train your own model, or use something
// other than inception_v3, then you'll need to update these.
string img(argv[1]);
string graph ="data/faster_rcnn_resnet101_coco_2018_01_28/frozen_inference_graph.pb";
string labels ="data/mscoco_label2.txt";
int32 input_width = 299;
int32 input_height = 299;
float input_mean = 0;
float input_std = 255;
string input_layer = "image_tensor:0";
vector<string> output_layer ={ "detection_boxes:0", "detection_scores:0", "detection_classes:0", "num_detections:0" };
bool self_test = false;
string root_dir = "";
//char imname[4096] = {0};
//sleep(15);
/* code */
// First we load and initialize the model.
std::unique_ptr<tensorflow::Session> session;
string graph_path = tensorflow::io::JoinPath(root_dir, graph);
LOG(ERROR) << "graph_path:" << graph_path;
Status load_graph_status = LoadGraph(graph_path, &session);
if (!load_graph_status.ok()) {
LOG(ERROR) << "LoadGraph ERROR!!!!"<< load_graph_status;
return -1;
}
// Get the image from disk as a float array of numbers, resized and normalized
// to the specifications the main graph expects.
std::vector<Tensor> resized_tensors;
string image_path = tensorflow::io::JoinPath(root_dir, img);
Status read_tensor_status =
ReadTensorFromImageFile(image_path, input_height, input_width, input_mean,
input_std, &resized_tensors);
if (!read_tensor_status.ok()) {
LOG(ERROR) << read_tensor_status;
return -1;
}
const Tensor& resized_tensor = resized_tensors[0];
LOG(ERROR) <<"image shape:" << resized_tensor.shape().DebugString()<< ",len:" << resized_tensors.size() << ",tensor type:"<< resized_tensor.dtype();
// << ",data:" << resized_tensor.flat<tensorflow::uint8>();
// Actually run the image through the model.
std::vector<Tensor> outputs;
Status run_status = session->Run({{input_layer, resized_tensor}},
output_layer, {}, &outputs);
if (!run_status.ok()) {
LOG(ERROR) << "Running model failed: " << run_status;
return -1;
}
//int image_width = resized_tensor.dims();
//int image_height = 0;
//int image_height = resized_tensor.shape()[1];
const int image_width = resized_tensor.shape().dim_size(2);
const int image_height = resized_tensor.shape().dim_size(1);
LOG(ERROR) << "size:" << outputs.size() << ",image_width:" << image_width << ",image_height:" << image_height << endl;
//tensorflow::TTypes<float>::Flat iNum = outputs[0].flat<float>();
tensorflow::TTypes<float>::Flat scores = outputs[1].flat<float>();
tensorflow::TTypes<float>::Flat classes = outputs[2].flat<float>();
tensorflow::TTypes<float>::Flat num_detections = outputs[3].flat<float>();
auto boxes = outputs[0].flat_outer_dims<float,3>();
LOG(ERROR) << "num_detections:" << num_detections(0) << "," << outputs[0].shape().DebugString();
//tensorflow::TTypes<uint8>::Flat image_flat = resized_tensors[1].flat<tensorflow::uint8>();//resized_tensor.flat<tensorflow::uint8>()
std::vector<std::string> lab = ReadLabelsFile(labels);
//Mat image_opencv;
Mat image_opencv(image_height, image_width, CV_8UC3, Scalar(127, 127, 127));
//image_opencv=imread(argv[1], CV_LOAD_IMAGE_COLOR);
// currently bugs in opencv
if(! image_opencv.data){
cout << "Could not open or find the image" << std::endl ;
return -1;
}
//image im = load_image_color(argv[1],0,0);
int linewidth = std::max(1, int(image_height * .005));
for(size_t i = 0; i < num_detections(0) && i < 20;++i)
{
if(scores(i) > 0.8)
{
LOG(ERROR) << i << ",score:" << scores(i) << ", label:" << lab.at(classes(i)-1) << ",class:" << classes(i)<< ",box:" << "," << boxes(0,i,0) << "," << boxes(0,i,1) << "," << boxes(0,i,2)<< "," << boxes(0,i,3);
char labelstr[4096] = {0};
strcat(labelstr, lab.at(classes(i)-1).c_str());
int offset = 80*123457 % int(classes(i));
//float rgb[3];
//rgb[0] = get_color(2,offset,int(classes(i)));
//rgb[1] = get_color(1,offset,int(classes(i)));
//rgb[2] = get_color(0,offset,int(classes(i)));
cv::Scalar color = cv::Scalar(get_color_box(0,offset,int(classes(i))), get_color_box(1,offset,int(classes(i))), get_color_box(2,offset,int(classes(i))));
rectangle(image_opencv, cvPoint(boxes(0,i,1) * image_width, boxes(0,i,2) * image_height), cvPoint(boxes(0,i,3) * image_width, boxes(0,i,0) * image_height), color, linewidth);
if (boxes(0,i,2) * image_height + linewidth * 3 < image_height){ //avoids printing text on top if box is too high
putText(image_opencv, lab.at(classes(i)-1), cvPoint(boxes(0,i,1) * image_width + linewidth, boxes(0,i,0) * image_height - linewidth * 3), FONT_HERSHEY_PLAIN, linewidth * 5, color );
}else{
putText(image_opencv, lab.at(classes(i)-1), cvPoint(boxes(0,i,1) * image_width + linewidth, boxes(0,i,0) * image_height + linewidth * 12), FONT_HERSHEY_PLAIN, linewidth * 5, color );
}
//draw_box(im, boxes(0,i,1)*im.w, boxes(0,i,0)*im.h, boxes(0,i,3)*im.w, boxes(0,i,2)*im.h, rgb[0], rgb[1], rgb[2]);
}
}
namedWindow( "Display window", WINDOW_AUTOSIZE );
LOG(ERROR) << "Create window";
imshow( "Display window", image_opencv);
LOG(ERROR) << "Display image";
waitKey(0);
//save_image(im, imname);
LOG(ERROR) << "before dispose of session";
session->Close();
session.reset();
LOG(ERROR) << "after dispose of session";
//session.status.reset();
//session.options.reset();
//TF_CloseSession( session, status );
//TF_DeleteSession( session, status );
//TF_DeleteStatus( status );
//TF_DeleteSessionOptions( options );
//Tensor resized_tensor_boxed;
//CreateBoxedTensor(resized_tensor, outputs[0], &resized_tensor_boxed);
//SaveToFile(resized_tensor_boxed, "file.png");
return 0;
}