-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspacex_dash_app.py
89 lines (75 loc) · 4.18 KB
/
spacex_dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
# Create a dash application
app = dash.Dash(__name__)
# Unique launch sites in the dataframe
launch_sites = spacex_df['Launch Site'].unique().tolist()
# Options for dropdown
dropdown_options = [{'label': 'All Sites', 'value': 'ALL'}] + [{'label': site, 'value': site} for site in launch_sites]
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
dcc.Dropdown(id='site-dropdown', options=dropdown_options, value='ALL', placeholder="Select a Launch Site here", searchable=True),
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
# TASK 3: Add a slider to select payload range
html.P("Payload range (Kg):"),
dcc.RangeSlider(id='payload-slider',
min=0,
max=10000,
step=1000,
marks={i: '{}'.format(i) for i in range(0, 10001, 1000)},
value=[min_payload, max_payload]),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback(
Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value')
)
def get_pie_chart(entered_site):
if entered_site == 'ALL':
# Use all rows in the dataframe to render and return a pie chart graph
fig = px.pie(spacex_df, names='class', title='Total Success Launches for All Sites')
else:
# Filter the dataframe for the selected site
filtered_df = spacex_df[spacex_df['Launch Site'] == entered_site]
# Render and return a pie chart graph to show success and failure counts
fig = px.pie(filtered_df, names='class', title=f'Total Success Launches for site {entered_site}')
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(
Output(component_id='success-payload-scatter-chart', component_property='figure'),
[Input(component_id='site-dropdown', component_property='value'),
Input(component_id="payload-slider", component_property="value")]
)
def update_scatter(selected_site, payload_range):
# Filtering based on the selected site
if selected_site == 'ALL':
filtered_df = spacex_df
else:
filtered_df = spacex_df[spacex_df['Launch Site'] == selected_site]
# Further filter based on the payload range
filtered_df = filtered_df[(filtered_df['Payload Mass (kg)'] >= payload_range[0]) & (filtered_df['Payload Mass (kg)'] <= payload_range[1])]
# Create a scatter plot
fig = px.scatter(filtered_df, x='Payload Mass (kg)', y='class', color='Booster Version Category',
title=f'Success by Payload for {selected_site}', labels={'class': 'Launch Outcome'})
return fig
# Run the app
if __name__ == '__main__':
app.run_server()