forked from reichlab/covid19-forecast-hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate-revisions-csv.R
203 lines (165 loc) · 6.35 KB
/
create-revisions-csv.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
library(tidyverse)
library(covidData)
library(here)
setwd(here())
## note that this file depends on a recent successful covidData `make all`
## function to load one week of data for a particular target variable as of a certain date
load_one_as_of <- function(as_of, target_var)
{
# temporal resolution depends on target_var
if (target_var == "hospitalizations") {
temporal_resolution <- "daily"
} else {
temporal_resolution <- "weekly"
}
# spatial resolution depends on target_var
if (target_var == "cases") {
all_locations <- covidData::fips_codes %>%
dplyr::pull(location)
this_spatial_resolution <- c("county", "state", "national")
} else {
all_locations <- covidData::fips_codes %>%
dplyr::filter(nchar(location) == 2) %>%
dplyr::pull(location)
this_spatial_resolution <- c("state", "national")
}
load_data(
as_of = as_of,
spatial_resolution = this_spatial_resolution,
temporal_resolution = temporal_resolution,
measure = target_var) %>%
mutate(as_of = lubridate::ymd(as_of)) #add column listing as_of date
}
# define Sundays to use for as_of dates
most_recent_sunday <- lubridate::floor_date(Sys.Date(), unit = "week")
get_next_sunday <- function(csv, default, start_from_scratch = FALSE) {
if (file.exists(csv) & !start_from_scratch) {
suppressMessages(read_csv(csv)) %>%
summarise(max(issue_date))%>%
pull(1)
} else {
lubridate::ymd(default)
}
}
first_case_as_of <- get_next_sunday("data-anomalies/revisions-inc-case.csv", "2020-04-26")
first_hosp_as_of <- get_next_sunday("data-anomalies/revisions-inc-hosp.csv", "2020-11-22")
first_death_as_of <- get_next_sunday("data-anomalies/revisions-inc-death.csv", "2020-04-26")
if (first_case_as_of < most_recent_sunday) {
case_as_ofs <- seq.Date(
from = first_case_as_of,
to = most_recent_sunday,
by = 7
)
weekly_inc_cases <- plyr::ldply(case_as_ofs,
load_one_as_of,
target_var = "cases") #combine revisions into 1 dataframe
case_revisions <- suppressMessages(purrr::map_dfr(
case_as_ofs[-1], # remove first issue which has no earlier issues to revise
function(as_of) {
updates <- weekly_inc_cases %>%
dplyr::filter(as_of == UQ(as_of - 7)) %>% ## filtering to only include last week's obs
dplyr::select(-as_of, -cum) %>%
dplyr::inner_join( ## joining this week's obs
weekly_inc_cases %>%
dplyr::filter(as_of == UQ(as_of)) %>%
dplyr::select(-cum),
by = c("location", "date")
) %>%
dplyr::filter(inc.x != inc.y) ## only keeping rows where obs are not the same
}) %>%
dplyr::left_join(covidData::fips_codes) %>%
dplyr::rename(
issue_date = as_of,
orig_obs = inc.x, ## inc.x comes from the df filtered to existing observations
revised_obs = inc.y) %>% ## inc.y comes from the df with most recent obs
dplyr::mutate(
real_diff = revised_obs - orig_obs,
relative_diff = ifelse(
orig_obs == 0,
revised_obs,
real_diff / abs(orig_obs))
) %>%
dplyr::select(location, location_name, date, orig_obs, issue_date, real_diff, relative_diff)
)
write_csv(case_revisions, file="data-anomalies/revisions-inc-case.csv", append = TRUE)
}
if (first_death_as_of < most_recent_sunday) {
death_as_ofs <- seq.Date(
from = first_death_as_of,
to = most_recent_sunday,
by = 7
)
## get all data for each target_var
weekly_inc_deaths <- plyr::ldply(death_as_ofs,
load_one_as_of,
target_var = "deaths") #combine revisions into 1 dataframe
## identify and compute the revisions
death_revisions <- suppressMessages(purrr::map_dfr(
death_as_ofs[-1], # remove first issue which has no earlier issues to revise
function(as_of) {
updates <- weekly_inc_deaths %>%
dplyr::filter(as_of == UQ(as_of - 7)) %>% ## filtering to only include last week's obs
dplyr::select(-as_of, -cum) %>%
dplyr::inner_join( ## joining this week's obs
weekly_inc_deaths %>%
dplyr::filter(as_of == UQ(as_of)) %>%
dplyr::select(-cum),
by = c("location", "date")
) %>%
dplyr::filter(inc.x != inc.y) ## only keeping rows where obs are not the same
}) %>%
dplyr::left_join(covidData::fips_codes) %>%
dplyr::rename(
issue_date = as_of,
orig_obs = inc.x, ## inc.x comes from the df filtered to existing observations
revised_obs = inc.y) %>% ## inc.y comes from the df with most recent obs
dplyr::mutate(
real_diff = revised_obs - orig_obs,
relative_diff = ifelse(
orig_obs == 0,
revised_obs,
real_diff / abs(orig_obs))
) %>%
dplyr::select(location, location_name, date, orig_obs, issue_date, real_diff, relative_diff)
)
write_csv(death_revisions, file="data-anomalies/revisions-inc-death.csv", append = TRUE)
}
if (first_hosp_as_of < most_recent_sunday) {
hosp_as_ofs <- seq.Date(
from = first_hosp_as_of,
to = most_recent_sunday,
by = 7
)
daily_inc_hosps <- plyr::ldply(hosp_as_ofs,
load_one_as_of,
target_var = "hospitalizations") #combine revisions into 1 dataframe
hosp_revisions <- suppressMessages(purrr::map_dfr(
hosp_as_ofs[-1], # remove first issue which has no earlier issues to revise
function(as_of) {
updates <- daily_inc_hosps %>%
dplyr::filter(as_of == UQ(as_of - 7)) %>% ## filtering to only include last week's obs
dplyr::select(-as_of, -cum) %>%
dplyr::inner_join( ## joining this week's obs
daily_inc_hosps %>%
dplyr::filter(as_of == UQ(as_of)) %>%
dplyr::select(-cum),
by = c("location", "date")
) %>%
dplyr::filter(inc.x != inc.y) ## only keeping rows where obs are not the same
}) %>%
dplyr::left_join(covidData::fips_codes) %>%
dplyr::rename(
issue_date = as_of,
orig_obs = inc.x, ## inc.x comes from the df filtered to existing observations
revised_obs = inc.y) %>% ## inc.y comes from the df with most recent obs
dplyr::mutate(
real_diff = revised_obs - orig_obs,
relative_diff = ifelse(
orig_obs == 0,
revised_obs,
real_diff / abs(orig_obs))
) %>%
dplyr::select(location, location_name, date, orig_obs, issue_date, real_diff, relative_diff)
)
write_csv(hosp_revisions, file="data-anomalies/revisions-inc-hosp.csv", append = TRUE)
}