-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathoptimal_control_problem.py
72 lines (53 loc) · 2.86 KB
/
optimal_control_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import pyomo.environ as pyo
from helper import BATTERY_CAPACITY, BATTERY_POWER, TEST_INDEX_END, TEST_INDEX_START, plot_control_trajectory, read_data
def build_optimization_problem(residual_fixed_load, price, soc, battery_power, battery_capacity, delta_time_hours=1):
time = range(len(residual_fixed_load))
soc_time = range(len(residual_fixed_load) + 1)
max_power_charge = battery_power
max_power_discharge = -1 * battery_power
max_soc = 100
min_soc = 0
soc_init = soc
energy_capacity = battery_capacity
m = pyo.AbstractModel()
m.power = pyo.Var(time, domain=pyo.Reals, bounds=(max_power_discharge, max_power_charge))
m.soc = pyo.Var(soc_time, bounds=(min_soc, max_soc))
def obj_expression(m):
# pyo.log to make the objective expression smooth and therefore solvable
return sum([price[i] * pyo.log(1 + pyo.exp(m.power[i] + residual_fixed_load[i])) for i in time])
m.OBJ = pyo.Objective(rule=obj_expression, sense=pyo.minimize)
def soc_start_rule(m):
return m.soc[0] == soc_init
m.soc_start = pyo.Constraint(rule=soc_start_rule)
def soc_constraint_rule(m, i):
# Define the system dynamics as constraint
return m.soc[i + 1] == float(100) * delta_time_hours * (m.power[i]) / energy_capacity + m.soc[i]
m.soc_constraints = pyo.Constraint(time, rule=soc_constraint_rule)
return m.create_instance()
if __name__ == "__main__":
solver = pyo.SolverFactory('ipopt')
load, price, generation = read_data()
load_eval = load[TEST_INDEX_START:TEST_INDEX_END]
price_eval = price[TEST_INDEX_START:TEST_INDEX_END]
generation_eval = generation[TEST_INDEX_START:TEST_INDEX_END]
residual_fixed_load_eval = load_eval - generation_eval
time = range(len(residual_fixed_load_eval))
m = build_optimization_problem(residual_fixed_load_eval,
price_eval,
soc=0,
battery_power=BATTERY_POWER,
battery_capacity=BATTERY_CAPACITY)
solver.solve(m, tee=True)
t = [time[i] for i in time]
baseline_cost = sum(residual_fixed_load_eval[residual_fixed_load_eval > 0] * price_eval[residual_fixed_load_eval > 0])
augmented_load = residual_fixed_load_eval + np.array([(pyo.value(m.power[i])) for i in time])
cost = sum(augmented_load[augmented_load > 0] * price_eval[augmented_load > 0])
print('baseline cost: ' + str(baseline_cost))
print('cost: ' + str(cost))
print('savings in %: ' + str(1 - cost/baseline_cost))
plot_control_trajectory(residual_load=[(residual_fixed_load_eval[i]) for i in time],
augmented_load=augmented_load,
price=price_eval,
battery_power=[(pyo.value(m.power[i])) for i in time]
)