-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
58 lines (41 loc) · 1.62 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python
# coding: utf-8
import sys
import numpy as np
import torch
import torchvision
sys.path.append('../firedetect')
from dataset import load_dataset
model = torch.load('../firedetect/weights/resnet50-epoch-1-valid_acc=0.9802-test_acc=0.63.pt')
dataset_paths = {'mine': '/home/013855803/fire_aerial2k_dataset/',
'dunnings': '/home/013855803/fire-dataset-dunnings/images-224x224/train',
'dunnings_test': "/home/tomek/projects/fire-detect-nn/data/fire-dataset-dunnings/images-224x224/test",}
def accuracy_gpu(pred, truth):
agreeing = pred.eq(truth)
acc = agreeing.sum().double()/agreeing.numel()
return float(acc)
tr = torchvision.transforms.Compose([torchvision.transforms.Resize((224,224)),
torchvision.transforms.ToTensor()])
test_dataset = torchvision.datasets.ImageFolder(root=dataset_paths['dunnings_test'],
transform=tr)
# test_dataset.class_to_idx = {'fire': 1, 'nofire': 0} # for dunnings
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=16,
num_workers=0,
shuffle=False
)
device = torch.device("cuda:0")
test_acc = []
with torch.no_grad():
model = model.to(device)
model.eval()
for i, data in enumerate(test_loader):
print(f'testing batch {i}/{len(test_loader)}')
inputs = data[0].to(device)
labels = torch.tensor(data[1], dtype=torch.bool).to(device)
scores = model(inputs)
pred = scores.squeeze() > 0.5
a = accuracy_gpu(pred, labels)
test_acc.append(a)
print(np.mean(test_acc))