-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathoptimize.py
executable file
·69 lines (52 loc) · 2.14 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterable
import numpy as np
import torch # pytype: disable=import-error
import model_navigator as nav
from model_navigator.configuration import Sample
def get_model():
"""Returns a simple torch.nn.Linear model"""
return torch.nn.Linear(5, 7).eval()
def get_dataloader():
"""Returns a random dataloader containing 10 batches of 3x5 tensors"""
return [torch.randn(3, 5) for _ in range(10)]
def get_verify_function():
"""Define verify function that compares outputs of the torch model and the optimized model."""
def verify_func(ys_runner: Iterable[Sample], ys_expected: Iterable[Sample]) -> bool:
for y_runner, y_expected in zip(ys_runner, ys_expected):
if not all(
np.allclose(a, b, rtol=1.0e-3, atol=1.0e-3) for a, b in zip(y_runner.values(), y_expected.values())
):
return False
return True
return verify_func
def main():
"""Get model, dataloader, verify_func, and run optimization"""
model = get_model()
dataloader = get_dataloader()
verify_func = get_verify_function()
"""
Optimize the model by performing model export, conversion, correctness tests,
profiling and additional verification.
verify_func can be used to check the exported and converted models against custom metrics.
"""
nav.torch.optimize(
model=model,
dataloader=dataloader,
verify_func=verify_func, # verify_func is optional but recommended.
)
if __name__ == "__main__":
main()