-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathsync_client.py
121 lines (107 loc) · 4.77 KB
/
sync_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import sys
import numpy as np
import tritonclient.http as httpclient
from tritonclient.utils import *
model_name = "bls_sync"
shape = [4]
with httpclient.InferenceServerClient("localhost:8000") as client:
input0_data = np.random.rand(*shape).astype(np.float32)
input1_data = np.random.rand(*shape).astype(np.float32)
inputs = [
httpclient.InferInput(
"INPUT0", input0_data.shape, np_to_triton_dtype(input0_data.dtype)
),
httpclient.InferInput(
"INPUT1", input1_data.shape, np_to_triton_dtype(input1_data.dtype)
),
httpclient.InferInput("MODEL_NAME", [1], np_to_triton_dtype(np.object_)),
]
inputs[0].set_data_from_numpy(input0_data)
inputs[1].set_data_from_numpy(input1_data)
# Will perform the inference request on the 'add_sub' model.
inputs[2].set_data_from_numpy(np.array(["add_sub"], dtype=np.object_))
outputs = [
httpclient.InferRequestedOutput("OUTPUT0"),
httpclient.InferRequestedOutput("OUTPUT1"),
]
response = client.infer(model_name, inputs, request_id=str(1), outputs=outputs)
result = response.get_response()
output0_data = response.as_numpy("OUTPUT0")
output1_data = response.as_numpy("OUTPUT1")
print("=========='add_sub' model result==========")
print(
"INPUT0 ({}) + INPUT1 ({}) = OUTPUT0 ({})".format(
input0_data, input1_data, output0_data
)
)
print(
"INPUT0 ({}) - INPUT1 ({}) = OUTPUT1 ({})".format(
input0_data, input1_data, output1_data
)
)
if not np.allclose(input0_data + input1_data, output0_data):
print("BLS sync example error: incorrect sum")
sys.exit(1)
if not np.allclose(input0_data - input1_data, output1_data):
print("BLS sync example error: incorrect difference")
sys.exit(1)
# Will perform the inference request on the pytorch model:
inputs[2].set_data_from_numpy(np.array(["pytorch"], dtype=np.object_))
response = client.infer(model_name, inputs, request_id=str(1), outputs=outputs)
result = response.get_response()
output0_data = response.as_numpy("OUTPUT0")
output1_data = response.as_numpy("OUTPUT1")
print("\n")
print("=========='pytorch' model result==========")
print(
"INPUT0 ({}) + INPUT1 ({}) = OUTPUT0 ({})".format(
input0_data, input1_data, output0_data
)
)
print(
"INPUT0 ({}) - INPUT1 ({}) = OUTPUT1 ({})".format(
input0_data, input1_data, output1_data
)
)
if not np.allclose(input0_data + input1_data, output0_data):
print("BLS sync example error: incorrect sum")
sys.exit(1)
if not np.allclose(input0_data - input1_data, output1_data):
print("BLS sync example error: incorrect difference")
sys.exit(1)
# Will perform the same inference request on an undefined model. This leads
# to an exception:
print("\n")
print("=========='undefined' model result==========")
try:
inputs[2].set_data_from_numpy(np.array(["undefined_model"], dtype=np.object_))
_ = client.infer(model_name, inputs, request_id=str(1), outputs=outputs)
except InferenceServerException as e:
print(e.message())
print("PASS: BLS Sync")
sys.exit(0)