-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathinit_plan.py
506 lines (309 loc) · 16.4 KB
/
init_plan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#!/usr/bin/env python
# coding: utf-8
# ### import
# In[1]:
from shapely.geometry import Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, box
import geopandas as gpd
from geopandas import GeoSeries, GeoDataFrame
from shapely.ops import split, unary_union, polygonize
import pickle
import osmnx as ox
# ### aggregate function from main roads
# In[2]:
def aggregate(lines):
line = lines[0]
for var in range(1, len(lines)):
line = split(line, lines[var])
if len(line.geoms) > 1:
line = MultiLineString(line)
else:
line = line.geoms[0]
new_line = split(lines[var], line)
if len(new_line.geoms) > 1:
new_line = MultiLineString(new_line)
else:
new_line = new_line.geoms[0]
line = line.union(new_line)
roads = list(line.geoms)
roads_type = [2 for _ in range(len(roads))]
intersections = []
for road in roads:
intersections.append(Point(road.coords[0]))
intersections.append(Point(road.coords[1]))
intersections = list(unary_union(intersections).geoms)
intersections_type = [13 for _ in range(len(intersections))]
feasibles = list(polygonize(roads))
feasibles_type = [1 for _ in range(len(feasibles))]
types = roads_type + intersections_type + feasibles_type
geometries = roads + intersections + feasibles
gdf = GeoDataFrame({'id': list(range(len(types))),
'type': types,
'existence': [True for _ in range(len(types))],
'geometry': geometries}).set_index('id')
return gdf
# ## synthetic
# ### grid
# In[26]:
z = [LineString([(0, 0), (0, 240)]),
LineString([(0, 240), (240, 240)]),
LineString([(240, 240), (240, 0)]),
LineString([(240, 0), (0, 0)]),
LineString([(0, 120), (240, 120)]),
LineString([(120, 0), (120, 240)]),
LineString([(60, 0), (60, 240)]),
LineString([(190, 0), (190, 240)]),
LineString([(0, 50), (240, 50)]),
LineString([(0, 180), (240, 180)])
]
# In[27]:
gdf = aggregate(z)
# In[28]:
gdf
# In[29]:
gdf[gdf.geom_type!='Polygon'].plot()
# In[30]:
d = dict()
d['gdf'] = gdf
with open('../cfg/test_data/synthetic/init_plan_grid.pickle', 'wb') as f:
pickle.dump(d, f)
# ## real
# ### hlg
# #### road + land_use
# In[138]:
z = [LineString([(442340, 4435700), (442720, 4435700)]), # 同成街
LineString([(442720, 4435700), (443180, 4435700)]), # 同成街
LineString([(443180, 4435700), (443600, 4435700)]), # 同成街
LineString([(443600, 4435700), (444060, 4435700)]), # 同成街
LineString([(441900, 4437560), (442000, 4437240)]), # 育知路
LineString([(442000, 4437240), (442120, 4436880)]), # 育知路
LineString([(442120, 4436880), (442240, 4436480)]), # 育知路
LineString([(442240, 4436480), (442300, 4436160)]), # 育知路
LineString([(442300, 4436160), (442340, 4435700)]), # 育知路
LineString([(441900, 4437560), (442440, 4437650)]), # 回南北路
LineString([(442440, 4437650), (442980, 4437740)]), # 回南北路
LineString([(442980, 4437740), (443500, 4437740)]), # 回南北路
LineString([(443500, 4437740), (443960, 4437740)]), # 回南北路
LineString([(443960, 4437740), (443980, 4437400)]), # 文华东路
LineString([(443980, 4437400), (444000, 4437060)]), # 文华东路
LineString([(444000, 4437060), (444060, 4436720)]), # 文华东路
LineString([(444060, 4436720), (444060, 4436200)]), # 文华东路
LineString([(444060, 4436200), (444060, 4435700)]), # 文华东路
LineString([(442240, 4436480), (442650, 4436630)]), # 回龙观西大街
LineString([(442650, 4436630), (443100, 4436720)]), # 回龙观西大街
LineString([(443100, 4436720), (443560, 4436720)]), # 回龙观西大街
LineString([(443560, 4436720), (444060, 4436720)]), # 回龙观东大街
LineString([(442440, 4437650), (442510, 4437310)]), # 育知东路
LineString([(442510, 4437310), (442580, 4436970)]), # 育知东路
LineString([(442580, 4436970), (442650, 4436630)]), # 育知东路
LineString([(442650, 4436630), (442720, 4436200)]), # 育知东路
LineString([(442720, 4436200), (442720, 4435700)]), # 育知东路
LineString([(442980, 4437740), (443020, 4437400)]), # 文华西路
LineString([(443020, 4437400), (443060, 4437060)]), # 文华西路
LineString([(443060, 4437060), (443100, 4436720)]), # 文华西路
LineString([(443100, 4436720), (443180, 4436200)]), # 文华西路
LineString([(443180, 4436200), (443180, 4435700)]), # 文华西路
LineString([(443500, 4437740), (443520, 4437400)]), # 文华路
LineString([(443520, 4437400), (443540, 4437060)]), # 文华路
LineString([(443540, 4437060), (443560, 4436720)]), # 文华路
LineString([(443560, 4436720), (443600, 4436200)]), # 文华路
LineString([(443600, 4436200), (443600, 4435700)]), # 文华路
LineString([(442300, 4436160), (442720, 4436200)]), # 龙跃街
LineString([(442720, 4436200), (443180, 4436200)]), # 龙跃街
LineString([(443180, 4436200), (443600, 4436200)]), # 龙跃街
LineString([(443600, 4436200), (444060, 4436200)]), # 龙跃街
LineString([(442000, 4437240), (442510, 4437310)]), # 龙禧二街
LineString([(442510, 4437310), (443020, 4437400)]), # 龙禧二街
LineString([(443020, 4437400), (443520, 4437400)]), # 龙禧二街
LineString([(443520, 4437400), (443980, 4437400)]), # 龙禧二街
LineString([(442120, 4436880), (442580, 4436970)]), # 龙禧三街
LineString([(442580, 4436970), (443060, 4437060)]), # 龙禧三街
LineString([(443060, 4437060), (443540, 4437060)]), # 龙禧三街
LineString([(443540, 4437060), (444000, 4437060)]), # 龙禧三街
LineString([(442060, 4437060), (442302, 4437100)]), # 回龙园东侧空地
LineString([(442255, 4437275), (442302, 4437100)]), # 云趣园二期西侧道路
LineString([(442302, 4437100), (442350, 4436925)]), # 云趣园二期西侧道路
LineString([(443400, 4437740), (443400, 4437400)]), # 禧乐汇
LineString([(443525, 4437315), (443760, 4437315)]), # 回龙观镇医院
LineString([(443760, 4437400), (443760, 4437315)]), # 回龙观镇医院
LineString([(443535, 4437145), (443995, 4437145)]), # 爱蕾幼儿园
LineString([(443050, 4437145), (443535, 4437145)]), # 幸福童心幼儿园
LineString([(443555, 4436805), (444045, 4436805)]), # 龙泽园街道办事处
LineString([(443090, 4436805), (443555, 4436805)]), # 回龙观法治文化公园
LineString([(443568, 4436616), (444060, 4436616)]), # 腾讯众创空间
LineString([(443830, 4436440), (444060, 4436440)]), # 昌平二中
LineString([(443830, 4436440), (443830, 4436200)]), # 昌平二中
LineString([(443400, 4436200), (443400, 4435950)]), # 龙腾苑四区改造
LineString([(443400, 4435950), (443600, 4435950)]), # 龙腾苑四区改造
LineString([(442720, 4435950), (443180, 4435950)]), # BHG华联购物中心
LineString([(442320, 4435930), (442405, 4435930)]), # 幸福童年幼儿园
LineString([(442405, 4436170), (442405, 4435930)]), # 幸福童年幼儿园
LineString([(442255, 4436400), (442615, 4436400)]), # 港龙商业中心
LineString([(442615, 4436400), (442615, 4436190)]), # 港龙商业中心
LineString([(442615, 4436400), (442685, 4436415)]), # 北京安达医院
LineString([(442685, 4436415), (442835, 4436415)]), # 昌平第二实验小学
LineString([(442835, 4436415), (442835, 4436200)]), # 昌平第二实验小学
LineString([(442664, 4436544), (443116, 4436616)]), # 上品折扣
LineString([(442820, 4437015), (442859.5, 4436768.5)]), # 文华市场
LineString([(442629, 4436732), (443090, 4436805)]), # 北店时代广场
LineString([(442488, 4437140), (442545, 4437140)]), # 云趣园东南角
LineString([(442488, 4437140), (442488, 4436952)]), # 云趣园东南角
]
# In[139]:
gdf = GeoDataFrame({'id': list(range(len(z))), 'geometry': z})
# define a bounding box in Beijing
north, south, east, west = 40.0887, 40.0698, 116.3444, 116.31852
# create network from that bounding box
G = ox.graph_from_bbox(north, south, east, west, network_type="drive")
G_projected = ox.project_graph(G)
gdf = gdf.set_crs(ox.graph_to_gdfs(G_projected)[1].crs)
gdf.explore()
# In[140]:
gdf = aggregate(z)
gdf[gdf.geom_type!='Polygon'].plot()
# In[141]:
print(len(gdf[gdf.geom_type=='LineString']))
print(len(gdf[gdf.geom_type=='Point']))
print(len(gdf[gdf.geom_type=='Polygon']))
# In[142]:
gdf_roads = gdf[gdf.geom_type!='Polygon']
gdf_roads = gdf_roads.set_crs(ox.graph_to_gdfs(G_projected)[1].crs)
gdf_roads.explore()
# In[143]:
gdf = gdf.set_crs(ox.graph_to_gdfs(G_projected)[1].crs)
gdf.explore()
# In[144]:
residential_ids = [187, 194, 195, 197, 189, 209, 210, 217, 198, 190, 212, 220, 200, 192, 213, 203, 183, 216, 185, 186]
green_l_ids = [207]
gdf.loc[residential_ids, 'type'] = 4
gdf.loc[green_l_ids, 'type'] = 7
# In[145]:
minx, miny, _, _ = gdf.unary_union.bounds
print(minx, miny)
gdf['geometry'] = gdf['geometry'].translate(-minx, -miny)
# In[146]:
print(gdf.area.sum())
print(gdf.unary_union.bounds)
# In[147]:
gdf[gdf.geom_type=='Polygon'].plot('type')
# In[148]:
d = dict()
d['gdf'] = gdf
with open('../cfg/test_data/real/hlg/init_plan_hlg.pickle', 'wb') as f:
pickle.dump(d, f)
# ### dhm
# #### road + land_use
# In[3]:
z = [LineString([(448167, 4409142), (450034, 4409142)]), # 南四环中路
LineString([(448167, 4411910), (448167, 4409142)]), # 南苑路
LineString([(448167, 4411910), (450034, 4411910)]), # 南三环中路
LineString([(450034, 4411910), (450034, 4409142)]), # 榴乡路
LineString([(449391, 4411910), (449391, 4410264)]), # 光彩路
LineString([(449391, 4410264), (449391, 4409142)]), # 光彩路
LineString([(448167, 4410664), (450034, 4410664)]), # 时村大街
LineString([(448167, 4411556), (448326, 4411556)]), # 丰海北街
LineString([(448326, 4411556), (449391, 4411556)]), # 丰海北街延长线及光彩北路
LineString([(448167, 4411074), (448515, 4411074)]), # 丰海南街
LineString([(448515, 4411074), (449391, 4411074)]), # 丰海南街延长线
LineString([(448574, 4410927), (449391, 4410927)]), # 时村内部道路
LineString([(449391, 4410927), (449712, 4410927)]), # 时村内部道路延长道路
LineString([(449712, 4410927), (449785, 4410836)]), # 时村内部道路延长道路
LineString([(449785, 4410836), (450034, 4410836)]), # 时村内部道路延长道路
LineString([(449535, 4410927), (449535, 4410664)]), # 石榴园北里内部道路
LineString([(449785, 4410836), (449785, 4410664)]), # 石榴庄菜市场西侧道路
LineString([(449624, 4411085), (449624, 4410927)]), # 东铁匠营二中
LineString([(449712, 4411085), (449712, 4410927)]), # 东铁匠营二中
LineString([(449712, 4410957), (449830, 4410957)]), # 丰台区时光小学
LineString([(449830, 4410957), (449830, 4410836)]), # 丰台区时光小学
LineString([(449535, 4410664), (449535, 4410445)]), # 石榴园南里西侧道路
LineString([(449391, 4410445), (450034, 4410445)]), # 石榴园南里南侧道路
LineString([(449785, 4410664), (449785, 4410445)]), # 东铁匠营第一小学分校东侧道路
LineString([(449680, 4410560), (449680, 4410445)]), # 东铁匠营第一小学分校
LineString([(449680, 4410560), (449785, 4410560)]), # 东铁匠营第一小学分校
LineString([(449009, 4411910), (449009, 4410664)]), # 光彩体育场西侧道路
LineString([(448379, 4411426), (449009, 4411426)]), # 内部道路
LineString([(448167, 4411910), (448326, 4411556)]), # 大红门路
LineString([(448326, 4411556), (448379, 4411426)]), # 大红门路
LineString([(448379, 4411426), (448515, 4411074)]), # 大红门路
LineString([(448515, 4411074), (448574, 4410927)]), # 大红门路
LineString([(448574, 4410927), (448740, 4410664)]), # 大红门路
LineString([(448740, 4410664), (448740, 4410015)]), # 大红门路
LineString([(448740, 4410015), (448599, 4409651)]), # 大红门路
LineString([(448599, 4409651), (448167, 4409651)]), # 大红门路
LineString([(448599, 4409651), (448599, 4409142)]), # 大红门东前街
LineString([(449200, 4410664), (449200, 4410264)]), # 南顶小区东侧道路
LineString([(449100, 4410264), (449100, 4409950)]), # 彩虹城四区北侧
LineString([(449100, 4409950), (449391, 4409950)]), # 彩虹城四区北侧
LineString([(448400, 4410927), (448574, 4410927)]), # 福海公园
LineString([(448400, 4410927), (448400, 4410664)]), # 福海公园
LineString([(448167, 4410015), (448740, 4410015)]), # 红门鞋城
LineString([(448167, 4410664), (448740, 4410015)]), # 凉水河
LineString([(448740, 4410015), (449391, 4409373)]), # 凉水河
LineString([(449391, 4409373), (450034, 4409373)]), # 凉水河
LineString([(449391, 4411638), (449862, 4411237)]), # 沙子口路
LineString([(449862, 4411237), (450034, 4411085)]), # 沙子口路
LineString([(449806, 4411910), (449862, 4411638)]), # 同仁东路
LineString([(449862, 4411638), (449862, 4411237)]), # 同仁东路
LineString([(449862, 4411538), (450034, 4411538)]), # 东铁匠营第二小学
LineString([(449862, 4411638), (450034, 4411638)]), # 顺三条
LineString([(449391, 4411085), (450034, 4411085)]), # 贾家花园南侧道路
LineString([(448740, 4410264), (450034, 4410264)]), # 南顶路
LineString([(448740, 4410464), (448920, 4410464)]), # 佟麟阁中学
LineString([(448920, 4410464), (448920, 4410264)]), # 佟麟阁中学
LineString([(448920, 4410464), (449100, 4410464)]), # 城市时尚家园
LineString([(449100, 4410464), (449100, 4410264)]), # 城市时尚家园
LineString([(449100, 4410664), (449100, 4410464)]), # 城市时尚家园东侧道路
LineString([(449391, 4409632), (450034, 4409632)]), # 金桥西街
LineString([(449391, 4410084), (450034, 4410084)]), # 京深海鲜市场
LineString([(449391, 4409837), (449540, 4409837)]), # 安榴南街
LineString([(449540, 4409837), (449630, 4409900)]), # 安榴南街
LineString([(449630, 4409900), (450034, 4409900)]), # 安榴南街
LineString([(449630, 4410084), (449630, 4409900)]), # 彩虹城一区东侧道路
LineString([(449702, 4409900), (449702, 4409632)]), # 丰彩南路
]
# In[4]:
gdf = GeoDataFrame({'id': list(range(len(z))), 'geometry': z})
# define a bounding box in Beijing
north, south, east, west = 39.8558, 39.8305, 116.4173, 116.3939
# create network from that bounding box
G = ox.graph_from_bbox(north, south, east, west, network_type="drive")
G_projected = ox.project_graph(G)
gdf = gdf.set_crs(ox.graph_to_gdfs(G_projected)[1].crs)
gdf.explore()
# In[5]:
gdf = aggregate(z)
gdf[gdf.geom_type!='Polygon'].plot()
# In[6]:
print(len(gdf[gdf.geom_type=='LineString']))
print(len(gdf[gdf.geom_type=='Point']))
print(len(gdf[gdf.geom_type=='Polygon']))
# In[7]:
gdf_roads = gdf[gdf.geom_type!='Polygon']
gdf_roads = gdf_roads.set_crs(ox.graph_to_gdfs(G_projected)[1].crs)
gdf_roads.explore()
# In[8]:
gdf = gdf.set_crs(ox.graph_to_gdfs(G_projected)[1].crs)
gdf.explore()
# In[9]:
feasible_ids = [223, 232, 224, 261, 233, 255, 257, 262, 245, 264, 265, 235, 267, 268, 250, 248, 227, 249, 266, 238, 239]
residential_ids = [228, 229, 231, 263, 242, 246, 244, 247, 260, 234, 226, 254, 256, 252, 258, 220, 259, 236, 237, 251, 253, 240, 241]
school_ids = [243]
office_ids = [230, 221]
green_l_ids = [225, 222]
gdf.loc[residential_ids, 'type'] = 4
gdf.loc[green_l_ids, 'type'] = 7
gdf.loc[school_ids, 'type'] = 9
gdf.loc[office_ids, 'type'] = 6
# In[10]:
minx, miny, _, _ = gdf.unary_union.bounds
print(minx, miny)
gdf['geometry'] = gdf['geometry'].translate(-minx, -miny)
# In[11]:
print(gdf.area.sum())
print(gdf.unary_union.bounds)
# In[12]:
gdf[gdf.geom_type=='Polygon'].plot('type')
# In[13]:
d = dict()
d['gdf'] = gdf
with open('../../cfg/test_data/real/dhm/init_plan_dhm_v2.pickle', 'wb') as f:
pickle.dump(d, f)