-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·100 lines (80 loc) · 2.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
from typing import Optional
import optuna
import pytorch_lightning as pl
from icecream import ic
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import MLFlowLogger
from lmpi.data.dataloader import make_dataloader
from lmpi.train_model import TrainModel
from lmpi.utils import get_config, update_suggest_config
print = ic
def fit(config: DictConfig, trial: Optional[optuna.trial.Trial]):
"""
Parameters
----------
config:
config for fitting
Returns
----------
test_loss: Any
"""
model = TrainModel(config)
mlflow_logger = MLFlowLogger(
tags={"trial": trial.number} if trial is not None else None,
**config.logger,
)
local_save_dir = os.path.join(
mlflow_logger.save_dir,
mlflow_logger.experiment_id,
mlflow_logger.run_id,
"artifacts",
)
OmegaConf.save(config, os.path.join(local_save_dir, "config.yaml"))
checkpoint_callback = ModelCheckpoint(
os.path.join(local_save_dir, "{epoch:02d}-{val_loss:.2f}"), monitor="val_loss"
)
trainer = pl.Trainer(
**config["trainer"],
logger=mlflow_logger,
callbacks=[checkpoint_callback],
)
dataloader = make_dataloader(config)
trainer.fit(
model=model,
train_dataloader=dataloader["train"],
val_dataloaders=dataloader["val"],
)
test_loss = trainer.test(model=model, test_dataloaders=dataloader["test"])
test_loss = test_loss[0]["test_loss"]
return test_loss
def objective(config: DictConfig):
def objective_fn(trial: optuna.trial.Trial):
config_fit = update_suggest_config(trial, config)
test_loss = fit(config_fit, trial)
return test_loss
return objective_fn
def main():
config = get_config(file="config.yaml", merge_cli=True)
if hasattr(config, "seed"):
seed_everything(config.seed)
if config.optuna.enable:
study = optuna.create_study(
direction=config.optuna.create_study.direction,
storage=config.optuna.create_study.storage,
study_name=config.optuna.create_study.study_name,
load_if_exists=True,
)
study.optimize(
func=objective(config),
n_trials=config.optuna.n_trials,
)
best_params = study.best_params
print(best_params)
else:
test_loss = fit(config)
print(test_loss)
if __name__ == "__main__":
main()