-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatasetLoader.py
375 lines (310 loc) · 15.3 KB
/
DatasetLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import numpy as np
import random
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from collections import Counter
import random
def loadRaw(datasetPath, isState=True, replaceConstant=False):
with np.load(datasetPath, allow_pickle=True) as dataset:
traces = dataset["traces"]
lengths = dataset["lengths"]
labels = dataset["labels"]
# only found in state
if(isState):
exeNames = dataset["exeNames"]
roleInStates = dataset["roleInStates"]
# replace role 1:constant to 8:one way flag, if needed
if(replaceConstant):
for l in labels:
for i in range(l.__len__()):
if(l[i] == 1):
l[i] = 8
if(isState):
return traces, labels, lengths, exeNames, roleInStates
else:
return traces, labels, lengths
def padZero(traces, maxTimestep, dim=3, pad_dim=2):
lengths = np.array([item.__len__() for item in traces])
lenMax = lengths.max()
for index in range(len(traces)):
trace = traces[index].tolist()
# for i in range(lenMax - trace.__len__()):
if(trace.__len__() < maxTimestep):
for i in range(maxTimestep - trace.__len__()):
traces[index] = np.append(traces[index], [np.zeros(trace[0].__len__()).astype(int)], axis=0)
traces[index] = traces[index][:maxTimestep]
return traces
def normalize(traces, dim=3):
for trace in traces:
for t in trace:
for i in range(t.__len__()):
traceItem = t[i]
if traceItem == -1:
t[i] = 999
# replace <0 to 0
if traceItem < 0:
t[i] = 0
return traces
def getDifferentST(indices, t, maxRole):
originalLength = indices.__len__()
traceLength = t[0].__len__()
differentST = []
if(originalLength == 0):
supportTraces = []
for ii in range(maxRole - 1):
supportTraces.append([[0] for i in range(traceLength)])
differentST.append(supportTraces)
return differentST
indices = np.pad(indices, (0, maxRole - indices.__len__() - 1), constant_values=-1)
STIndices = []
for index in range(maxRole - 1):
temp = indices
firstElement = temp[0]
temp = np.delete(temp, 0)
temp = np.insert(temp, index, firstElement)
# temp = np.pad(temp, (0, maxRole - temp.__len__()), constant_values=-1)
STIndices.append(temp)
for STindex in STIndices:
supportTraces = []
for index in STindex:
if(index != -1):
supportTraces.append([[item] for item in t[index]])
else:
supportTraces.append([[0] for i in range(traceLength)])
# if(indices.__len__() + 1 < maxRole):
# for ii in range(maxRole - (indices.__len__() + 1)):
# supportTraces.append([[0] for i in range(traceLength)])
differentST.append(supportTraces)
return differentST
class Trace():
def load(self, **kwargs):
return self.preprocess(self.path, **kwargs)
def padZero(self, traces, lengths):
out = traces
lenMax = lengths.max()
for i in range(traces.__len__()):
out[i] = np.pad(traces[i], (0, lenMax - lengths[i]))
out[i] = out[i][:22]
return np.array(out), lenMax
def normalize(self, traces):
for t in traces:
for i in range(t.__len__()):
item = t[i]
# replace -1 to 999
if item == -1:
t[i] = 999
# replace <0 to 0
if item < 0:
t[i] = 0
# x becomes x / x.max()
# tracesMax = np.array(traces.max()).max()
# t[i] = item / tracesMax
return traces
class StateTrace(Trace):
def __init__(self, path, isPrediction = False, maxRole = None, roles=3, replaceConstant=False):
self.path = path
self.isState = True
self.isPrediction = isPrediction
self.maxRole = maxRole
self.roles = roles
self.replaceConstant = replaceConstant
if(self.roles == 3):
self.r4 = StateTrace("out-dataset/dataset-state-trace-110-r4.npz", roles=4)
self.r5 = StateTrace("out-dataset/dataset-state-trace-110-r5.npz", roles=5)
self.r7 = StateTrace("out-dataset/dataset-state-trace-105-r7.npz", roles=7)
self.r4mod = StateTrace("out-dataset/dataset-state-trace-110-r5.npz", roles=4, replaceConstant=True)
self.r6mod = StateTrace("out-dataset/dataset-state-trace-105-r7.npz", roles=6, replaceConstant=True)
if(self.isPrediction != True):
traces, labels, _lengths, exeNames, roleInStates = loadRaw(self.path)
maxRole = max(roleInStates)
self.prediction = StateTrace("out-dataset/prediction/dataset.npz", isPrediction=True, maxRole=maxRole)
if(self.roles == 4):
if(self.isPrediction != True):
traces, labels, _lengths, exeNames, roleInStates = loadRaw(self.path)
maxRole = max(roleInStates)
self.prediction = StateTrace("out-dataset/prediction/r5/dataset.npz", isPrediction=True, maxRole=maxRole, roles=4, replaceConstant=True)
if(self.roles == 5):
if(self.isPrediction != True):
traces, labels, _lengths, exeNames, roleInStates = loadRaw(self.path)
maxRole = max(roleInStates)
self.prediction = StateTrace("out-dataset/prediction/r5/dataset.npz", isPrediction=True, maxRole=maxRole, roles=5)
def preprocess(self, datasetPath, flatten=True, model=None):
"Default return [state, timestep, features], if flatten=True, "
traces, labels, _lengths, exeNames, roleInStates = loadRaw(datasetPath, replaceConstant = self.replaceConstant)
if(self.isPrediction == False and self.maxRole == None):
maxRole = roleInStates.max()
else:
maxRole = self.maxRole
if(model == None):
# flatten 3D to 2D
traces = [np.transpose(t) for t in traces]
traces = [t for ts in traces for t in ts]
lengths = np.array([t.__len__() for t in traces])
traces, lengthsMax = self.padZero(traces, lengths)
traces, lengthsMax = self.normalize(traces)
labels = self.oneHot(labels)
# x_train, x_test, y_train, y_test = train_test_split(traces, labels, test_size=0.2)
return np.array([t for t in traces]), labels, lengths, lengthsMax , exeNames, roleInStates
if(model == '1'):
outTraces = []
for t in traces:
t = np.array(t).transpose()
traceLength = t.__len__()
for i in range(traceLength):
indices = list(range(traceLength))
indices.remove(i)
mainTrace = [[item] for item in t[i]]
supportTraces = []
for index in indices:
supportTraces.append([[item] for item in t[index]])
if(indices.__len__() == 0):
supportTraces = [[[0] for i in range(mainTrace.__len__())]]
generated = [np.concatenate((mainTrace, supportTrace), axis=1) for supportTrace in supportTraces]
outTraces.extend(generated)
outLabels = []
for l in labels:
length = l.__len__()
for item in l:
if(length == 1):
outLabels.append(item)
else:
for i in range(length-1):
outLabels.append(item)
outTraces = normalize(outTraces)
outTraces = padZero(outTraces, 300)
lengths = np.array([t.__len__() for t in outTraces])
lengthsMax = lengths.max()
return np.array(outTraces), np.array(LabelBinarizer().fit_transform(outLabels)), lengths, lengthsMax , exeNames, roleInStates
if(model == '2a'):
outTraces = []
# maxRole = roleInStates.max()
for t in traces:
t = np.array(t).transpose()
traceLength = t.__len__()
for i in range(traceLength):
indices = list(range(traceLength))
indices.remove(i)
mainTrace = [[item] for item in t[i]]
supportTraces = []
for index in indices:
supportTraces.append([[item] for item in t[index]])
if(indices.__len__() + 1 < maxRole):
for ii in range(maxRole - (indices.__len__() + 1)):
supportTraces.append([[0] for i in range(mainTrace.__len__())])
generated = mainTrace
for supportTrace in supportTraces:
generated = np.concatenate((generated, supportTrace), axis=1)
outTraces.append(generated)
outTraces = normalize(outTraces)
outTraces = padZero(outTraces, 300)
lengths = np.array([t.__len__() for t in outTraces])
lengthsMax = lengths.max()
labels = self.oneHot(labels)
return np.array(outTraces), labels, lengths, lengthsMax , exeNames, roleInStates
if(model == '2b'):
outTraces = []
# maxRole = roleInStates.max()
# dig into each state
for t in traces:
# each trace become [timestep, single role] ([[0,1,2,3,4], [0,0,0,0,0], ...])
t = np.array(t).transpose()
traceLength = t.__len__() # in terms of timestep
for i in range(traceLength):
indices = list(range(traceLength))
indices.remove(i)
mainTrace = [[item] for item in t[i]]
differentST = getDifferentST(indices, t, maxRole)
supportTraces = []
# for index in indices:
# supportTraces.append([[item] for item in t[index]])
# if(indices.__len__() + 1 < maxRole):
# for ii in range(maxRole - (indices.__len__() + 1)):
# supportTraces.append([[0] for i in range(mainTrace.__len__())])
for supportTraces in differentST:
generated = mainTrace
for supportTrace in supportTraces:
generated = np.concatenate((generated, supportTrace), axis=1)
outTraces.append(generated)
outLabels = []
for l in labels:
length = l.__len__()
for item in l:
if(length == 1):
outLabels.append(item)
else:
for i in range(maxRole - 1):
outLabels.append(item)
outTraces = normalize(outTraces)
outTraces = padZero(outTraces, 300)
lengths = np.array([t.__len__() for t in outTraces])
lengthsMax = lengths.max()
return np.array(outTraces), np.array(LabelBinarizer().fit_transform(outLabels)), lengths, lengthsMax , exeNames, roleInStates
if(model == '3'):
x, y, lens, lenMax, exeNames, roleInStates = self.load(model='2b')
x1 = []
for i in x:
x1.append([[k[0]] for k in i])
x1 = np.array(x1)
x2 = []
for i in x:
x2.append([k[1:] for k in i])
x2 = np.array(x2)
return (x1, x2), y, lens, lenMax, exeNames, roleInStates
def oneHot(self, labels):
"loop through labels, one hot & flatten them"
outLabels = labels
# flatten
outLabels = [i for items in outLabels for i in items]
#one hot
outLabels = LabelBinarizer().fit_transform(outLabels)
return outLabels
def normalize(self, traces):
"Further remove last dim ([300:])"
out_traces = super().normalize(traces)
out_traces = np.delete(out_traces, np.s_[300:], axis=1)
return out_traces, 300
class VariableTrace(Trace):
def __init__(self, path):
self.path = path
self.isState = False
def preprocess(self, datasetPath):
traces, labels, lengths = loadRaw(datasetPath, False)
traces = self.normalize(traces)
traces, lengthsMax = self.padZero(traces, lengths)
traces = np.array([t for t in traces])
traces = traces.reshape(traces.shape[0], traces.shape[1], 1)
labels = self.oneHot(labels)
lengthMax = np.array(lengths).max()
# print("traces", np.array([t for t in traces]).shape)
# print("labels", traces[:3])
# print("")
# print("labels", labels[:3])
# x_train, x_test, y_train, y_test = train_test_split(traces, labels, test_size=0.2)
return traces, labels, lengths, lengthMax
def oneHot(self, labels):
"reference: https://chrisalbon.com/machine_learning/preprocessing_structured_data/one-hot_encode_features_with_multiple_labels/"
return LabelBinarizer().fit_transform(labels)
def loadPredition(self, length, stack=False):
"Generate prediction data for 3 roles"
predictions = [None] * 3
predictions[0] = [np.zeros(length), np.ones(length), np.full(length, 999), np.full(length, -1)] # ? -1 may not work ._.
predictions[1] = [np.arange(0, length, 1), np.arange(length, 0, -1), np.arange(0, 3 * length, 3), np.arange(1, 2 * length, 2)]
predictions[2] = [np.insert(np.arange(0, length - 1, 1), 0, 0),
np.insert(np.arange(0, length * 2 - 2, 2), 0, 0),
np.pad(sorted(np.arange(10), key=lambda k: random.random()), (0, length - 10)),
np.pad(sorted(np.arange(0, 100, 10), key=lambda k: random.random()), (0, length - 10))
]
predictions = np.array([np.array(p).astype(float) for p in predictions])
if (not stack):
return predictions
else:
return predictions.reshape(12, length)
stateTrace = StateTrace("out-dataset/dataset-state-trace-110.npz")
variableTrace = VariableTrace("out-dataset/dataset-variable-trace-110.npz")
# sampleTrace = StateTrace("out-dataset/dataset.npz")
loaded = variableTrace.load()
# loaded = stateTrace.r5.prediction.load(model='2b')
# loaded = sampleTrace.load(model='2b')
# loaded = stateTrace.r4mod.load()
print(loaded[0], loaded[1], sep='\n---\n')