-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-prediction.py
71 lines (52 loc) · 2.59 KB
/
model-prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import collections
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
import DatasetLoader as Loader
from scipy import stats
#'1': Fixed value, '2': Stepper, '3': Gatherer
model = tf.keras.models.load_model('rnn-stateTrace/model3c_checkpoint/')
# (x1, x2), y, lengths, lengthsMax, exeNames, roleInStates = Loader.stateTrace.r5.load(model='3')
# features = roleInStates.max()
# x1_train, x1_validation, x2_train, x2_validation, y_train, y_validation = train_test_split(x1, x2, y, test_size=0.2)
# print("\n# Evaluate")
# result = model.evaluate([x1_validation, x2_validation], y_validation)
# dict(zip(model.metrics_names, result))
# print("x shape = ",x1_train.shape)
# x, y, lens, lenMax = loader.load(datasetPath="out-dataset/dataset-variable-trace-110.npz")
# x = x.reshape(x.__len__(), 1, lenMax)
# print("x shape = ",x.shape)
# x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
# print(stats.describe(y_test))
# #for arr in y_test: #do not need the loop at this point, but looks prettier
# p = model.predict(x)
# p = np.argmax(p,axis=-1)
# print(stats.describe(y_test))
# print('\n# Evaluate')
# result = model.evaluate(x,y)
# dict(zip(model.metrics_names, result))
# x,y = Loader.stateTrace.r5.prediction.load(model='3')[0][0], Loader.stateTrace.r5.prediction.load(model='3')[1]
# p1 = model.predict([x,y])
# print("p1 = ",np.argmax(p1,axis=-1), '\n' ,p1)
# x,y =Loader.stateTrace.r5.prediction.load(model='3')[0], Loader.stateTrace.r5.prediction.load(model='3')[1]
# p2 = model.predict([x,y])
# print("p2 = ",np.argmax(p2,axis=-1), '\n' ,p2)
# x,y = Loader.stateTrace.r5.prediction.load(model='3')[0], Loader.stateTrace.r5.prediction.load(model='3')[1]
# p3 = model.predict([x,y])
# print("p3 = ",np.argmax(p3,axis=-1), '\n' ,p3)
# x,y = Loader.stateTrace.r5.prediction.load(model='3')[0], Loader.stateTrace.r5.prediction.load(model='3')[1]
# p3 = model.predict([x,y])
# print("p4 = ",np.argmax(p3,axis=-1), '\n' ,p3)
# x,y = Loader.stateTrace.r5.prediction.load(model='3')[0], Loader.stateTrace.r5.prediction.load(model='3')[1]
# p3 = model.predict([x,y])
# print("p5 = ",np.argmax(p3,axis=-1), '\n' ,p3)
# print(Loader.stateTrace.r5.prediction.load(model='3')[0])
(x1, x2), y, lengths, lengthsMax, exeNames, roleInStates = Loader.stateTrace.r5.prediction.load(model='3')
predictions = model.predict([x1,x2])
i = 0
while i < y.__len__():
print("p",[i]," answer:", np.argmax(y[i],axis=-1))
print("p",[i]," = ",np.argmax(predictions[i],axis=-1), '\n' ,predictions[i])
i = i +1