-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_train.py
103 lines (86 loc) · 3.17 KB
/
cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
import os
from captcha_cnn import CaptchaCNN
from captcha_dataset import CaptchaDataset
transform = transforms.Compose([
transforms.Resize((38, 112)),
# 随机旋转
transforms.RandomRotation(10),
# 随机平移
transforms.RandomAffine(0, translate=(0.1, 0.1)),
# 随机颜色扰动
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
transforms.ToTensor(),
])
# ========= 训练集 ==========
train_image_dir = 'data/train'
train_image_paths = os.listdir(train_image_dir)
# train_labels = [("image1.png", "1234"), ("image2.png", "5678")]
train_labels = []
for each_image in train_image_paths:
each_label = str(each_image).split(".")[0]
train_labels.append((each_image, each_label))
train_dataset = CaptchaDataset(train_image_dir, labels=train_labels, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# =========== 测试集 ==========
test_image_dir = 'data/test'
test_image_paths = os.listdir(test_image_dir)
test_labels = []
for each_image in test_image_paths:
each_label = str(each_image).split(".")[0]
test_labels.append((each_image, each_label))
test_dataset = CaptchaDataset(test_image_dir, labels=test_labels, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
model = CaptchaCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=1e-4)
# 检查 MPS 支持
if torch.backends.mps.is_available():
device = torch.device("mps")
print("Using MPS backend")
elif torch.cuda.is_available():
device = torch.device("cuda")
print("Using CUDA backend")
else:
device = torch.device("cpu")
print("MPS and CUDA not available, using CPU")
model.to(device)
num_epochs = 4001
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for images, labels in train_loader:
# 将数据移到GPU
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = 0
for i in range(4):
loss += criterion(outputs[:, i, :], labels[:, i])
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}")
if (epoch + 1) % 100 == 0:
torch.save(model.state_dict(), f"model/captcha_model_{epoch + 1}.pth")
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = 0
for i in range(4):
loss += criterion(outputs[:, i, :], labels[:, i])
val_loss += loss.item()
_, predicted = torch.max(outputs, 2)
total += labels.size(0) * 4 # 总字符数
correct += (predicted == labels).sum().item()
val_loss /= len(test_loader)
print(f"Validation Loss: {val_loss}, Accuracy: {100 * correct / total}%")