-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay 21 Count Square Submatrices with All Ones.cpp
75 lines (53 loc) · 1.25 KB
/
Day 21 Count Square Submatrices with All Ones.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
PROBLEM:
Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.
Example 1:
Input: matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
Output: 15
Explanation:
There are 10 squares of side 1.
There are 4 squares of side 2.
There is 1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
Output: 7
Explanation:
There are 6 squares of side 1.
There is 1 square of side 2.
Total number of squares = 6 + 1 = 7.
Constraints:
1. 1 <= arr.length <= 300
2. 1 <= arr[0].length <= 300
3. 0 <= arr[i][j] <= 1
SOLUTION:
class Solution {
public:
int countSquares(vector<vector<int>>& matrix) {
int i,j,n,m,ans=0;
n=matrix.size();
m=matrix[0].size();
vector<vector<int>> dp(n,vector<int>(m,0));
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
if( (i==0 || j==0 ) && matrix[i][j]==1)
dp[i][j]=1;
else if(matrix[i][j]==1)
dp[i][j] = 1 +min({dp[i-1][j],dp[i][j-1],dp[i-1][j-1]});
ans+=dp[i][j];
}
}
return ans;
}
};