-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathedge264_slice.c
1796 lines (1673 loc) · 73.8 KB
/
edge264_slice.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "edge264_internal.h"
// This file is compiled twice: once for CAVLC and once for CABAC
#undef CAFUNC
#undef CACALL
#undef CAJUMP
#undef CACOND
#ifndef CABAC
#define CABAC 0
#endif
#if !CABAC
#define CAFUNC(f, ...) f ## _cavlc(Edge264Context *ctx, ## __VA_ARGS__)
#define CACALL(f, ...) f ## _cavlc(ctx, ## __VA_ARGS__)
#define CAJUMP(f, ...) { f ## _cavlc(ctx, ## __VA_ARGS__); return; }
#define CACOND(cavlc, cabac) cavlc
#else
#define CAFUNC(f, ...) f ## _cabac(Edge264Context *ctx, ## __VA_ARGS__)
#define CACALL(f, ...) f ## _cabac(ctx, ## __VA_ARGS__)
#define CAJUMP(f, ...) { f ## _cabac(ctx, ## __VA_ARGS__); return; }
#define CACOND(cavlc, cabac) cabac
static const i8x16 sig_inc_4x4 =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
static const i8x16 sig_inc_8x8[2][4] = {{
{ 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5},
{ 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9, 10, 9, 8, 7},
{ 7, 6, 11, 12, 13, 11, 6, 7, 8, 9, 14, 10, 9, 8, 6, 11},
{12, 13, 11, 6, 9, 14, 10, 9, 11, 12, 13, 11, 14, 10, 12, 0},
}, {
{ 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5},
{ 6, 9, 10, 10, 8, 11, 12, 11, 9, 9, 10, 10, 8, 11, 12, 11},
{ 9, 9, 10, 10, 8, 11, 12, 11, 9, 9, 10, 10, 8, 13, 13, 9},
{ 9, 10, 10, 8, 13, 13, 9, 9, 10, 10, 14, 14, 14, 14, 14, 0},
}};
static const i8x16 last_inc_8x8[4] = {
{0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4},
{5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8},
};
static const i8x16 sig_inc_chromaDC[2] =
{{0, 1, 2, 0, 0, 1, 2, 0}, {0, 0, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 2, 2, 2, 0}};
static const i16x4 ctxIdxOffsets_16x16DC[3][2] = {
{{85, 105, 166, 227}, {85, 277, 338, 227}}, // ctxBlockCat==0
{{460, 484, 572, 952}, {460, 776, 864, 952}}, // ctxBlockCat==6
{{472, 528, 616, 982}, {472, 820, 908, 982}}, // ctxBlockCat==10
};
static const i16x4 ctxIdxOffsets_16x16AC[3][2] = {
{{89, 119, 180, 237}, {89, 291, 352, 237}}, // ctxBlockCat==1
{{464, 498, 586, 962}, {464, 790, 878, 962}}, // ctxBlockCat==7
{{476, 542, 630, 992}, {476, 834, 922, 992}}, // ctxBlockCat==11
};
static const i16x4 ctxIdxOffsets_chromaDC[2] =
{{97, 149, 210, 257}, {97, 321, 382, 257}}; // ctxBlockCat==3
static const i16x4 ctxIdxOffsets_chromaAC[2] =
{{101, 151, 212, 266}, {101, 323, 384, 266}}; // ctxBlockCat==4
static const i16x4 ctxIdxOffsets_4x4[3][2] = {
{{93, 134, 195, 247}, {93, 306, 367, 247}}, // ctxBlockCat==2
{{468, 528, 616, 972}, {468, 805, 893, 972}}, // ctxBlockCat==8
{{480, 557, 645, 1002}, {480, 849, 937, 1002}}, // ctxBlockCat==12
};
static const i16x4 ctxIdxOffsets_8x8[3][2] = {
{{1012, 402, 417, 426}, {1012, 436, 451, 426}}, // ctxBlockCat==5
{{1016, 660, 690, 708}, {1016, 675, 699, 708}}, // ctxBlockCat==9
{{1020, 718, 748, 766}, {1020, 733, 757, 766}}, // ctxBlockCat==13
};
#endif
/**
* Parse the coeff_token header for a non-ChromaDCLevel residual block encoded
* with CAVLC (9.2.1)
*
* While both CAVLC and residual coefficients are not too critical to optimize,
* this function is designed to be simple and compact.
*/
#if !CABAC
static int parse_coeff_token_cavlc(Edge264Context *ctx, int i4x4, int nA, int nB) {
static const uint8_t nC_offset[8] = {184, 184, 80, 80, 0, 0, 0, 0};
static const int16_t tokens[38 * 8] = {
543, 539, 535, 531, 527, 522, 517, 512, // 4 <= nC < 8
661, 662, 657, 658, 653, 675, 654, 649,
780, 798, 797, 776, 807, 794, 793, 772,
924, 920, 934, 916, 939, 930, 929, 912,
1075, 1070, 1065, 1060, 1071, 1066, 1061, 1056,
1200, 1206, 1201, 1196, 1207, 1202, 1197, 1192,
1341, 1336, 1339, 1338, 1337, 1332, 1205, 1205,
1345, 1345, 1340, 1340, 1343, 1343, 1342, 1342,
1347, 1347, 1347, 1347, 1346, 1346, 1346, 1346,
1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
261, 261, 261, 261, 256, 256, 256, 256, // 2 <= cN < 4
531, 531, 527, 527, 394, 394, 394, 394,
795, 782, 781, 772, 663, 663, 649, 649,
799, 799, 786, 786, 785, 785, 776, 776,
931, 931, 918, 918, 917, 917, 908, 908,
1044, 1044, 1050, 1050, 1049, 1049, 1040, 1040,
1191, 1191, 1182, 1182, 1181, 1181, 1176, 1176,
1455, 1446, 1445, 1440, 1451, 1442, 1441, 1436,
1580, 1582, 1581, 1576, 1587, 1578, 1577, 1572,
1723, 1718, 1717, 1716, 1719, 1714, 1713, 1712,
1853, 1852, 1854, 1849, 1722, 1722, 1720, 1720,
1859, 1859, 1858, 1858, 1857, 1857, 1856, 1856,
1727, 1727, 1727, 1727, 1727, 1727, 1727, 1727,
128, 128, 128, 128, 128, 128, 128, 128, // 0 <= nC < 2
261, 261, 261, 261, 261, 261, 261, 261,
394, 394, 394, 394, 394, 394, 394, 394,
777, 777, 772, 772, 655, 655, 655, 655,
919, 919, 910, 910, 787, 787, 787, 787,
1051, 1051, 1042, 1042, 1037, 1037, 1032, 1032,
1183, 1183, 1174, 1174, 1169, 1169, 1164, 1164,
1315, 1315, 1306, 1306, 1301, 1301, 1296, 1296,
1447, 1447, 1438, 1438, 1433, 1433, 1428, 1428,
1696, 1702, 1697, 1692, 1707, 1698, 1693, 1688,
1843, 1838, 1833, 1832, 1839, 1834, 1829, 1828,
1979, 1974, 1969, 1968, 1975, 1970, 1965, 1964,
2115, 2110, 2109, 2104, 2111, 2106, 2105, 2100,
2112, 2112, 2114, 2114, 2113, 2113, 2108, 2108,
1973, 1973, 1973, 1973, 1973, 1973, 1973, 1973,
};
int sum = nA + nB;
int nC = !(ctx->unavail4x4[i4x4] & 3) ? (sum + 1) >> 1 : sum;
int coeff_token, v;
if (__builtin_expect(nC < 8, 1)) {
int leadingZeroBits = clz(ctx->t._gb.msb_cache | (size_t)1 << (SIZE_BIT - 15));
unsigned fourBits = ctx->t._gb.msb_cache >> (SIZE_BIT - 4 - leadingZeroBits);
int token = tokens[nC_offset[nC] + leadingZeroBits * 8 + fourBits - 8];
coeff_token = token & 127;
v = token >> 7;
} else {
coeff_token = (ctx->t._gb.msb_cache >> (SIZE_BIT - 6)) + 4;
if (coeff_token == 7)
coeff_token = 0;
v = 6;
}
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, v);
if (ctx->t._gb.lsb_cache <<= v)
return coeff_token;
return refill(&ctx->t._gb, coeff_token);
}
// 4:2:0 is best handled separately due to the open-ended 0000000 code and 3 bit suffixes
static int parse_DC2x2_coeff_token_cavlc(Edge264Context *ctx) {
static const int16_t tokens[] = {
133, 133, 133, 133,
256, 256, 256, 256,
394, 394, 394, 394,
776, 783, 777, 772,
784, 784, 780, 780,
910, 910, 909, 909,
1042, 1042, 1041, 1041,
915, 915, 915, 915,
};
int leadingZeroBits = clz(ctx->t._gb.msb_cache | (size_t)1 << (SIZE_BIT - 8));
unsigned suffix = ctx->t._gb.msb_cache >> (SIZE_BIT - 3 - leadingZeroBits) & 3;
int token = tokens[leadingZeroBits * 4 + suffix];
int coeff_token = token & 127;
int v = token >> 7;
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, v);
if (ctx->t._gb.lsb_cache <<= v)
return coeff_token;
return refill(&ctx->t._gb, coeff_token);
}
#endif
/**
* Temporary functions for two alternatives to parse total_zeros.
*/
#if !CABAC
static inline int parse_total_zeros(Edge264Context *ctx, int endIdx, int TotalCoeff) {
static const uint8_t codes[27][9 * 4] = { // [tzVlcIndex][leadingZeroBits][suffix]
// 2x2 blocks
{16, 16, 16, 16, 33, 33, 33, 33, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51},
{16, 16, 16, 16, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
{16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17},
{}, // 2x4 blocks
{16, 16, 16, 16, 49, 49, 50, 50, 67, 67, 68, 68, 69, 69, 69, 69, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87},
{51, 52, 53, 54, 33, 33, 33, 33, 50, 50, 50, 50, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48},
{35, 35, 52, 53, 34, 34, 34, 34, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48},
{35, 35, 48, 52, 34, 34, 34, 34, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33},
{34, 34, 35, 35, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32},
{18, 18, 18, 18, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32},
{17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16},
{}, // 4x4 blocks
{16, 16, 16, 16, 50, 50, 49, 49, 68, 68, 67, 67, 86, 86, 85, 85, 104, 104, 103, 103, 122, 122, 121, 121, 140, 140, 139, 139, 158, 158, 157, 157, 159, 159, 159, 159},
{51, 50, 49, 48, 70, 69, 52, 52, 72, 72, 71, 71, 90, 90, 89, 89, 108, 108, 107, 107, 109, 109, 109, 109, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110},
{54, 51, 50, 49, 68, 64, 55, 55, 72, 72, 69, 69, 90, 90, 89, 89, 92, 92, 92, 92, 107, 107, 107, 107, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109},
{54, 53, 52, 49, 67, 66, 56, 56, 73, 73, 71, 71, 90, 90, 80, 80, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92},
{54, 53, 52, 51, 65, 64, 55, 55, 72, 72, 66, 66, 74, 74, 74, 74, 89, 89, 89, 89, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91},
{53, 52, 51, 50, 55, 55, 54, 54, 57, 57, 57, 57, 72, 72, 72, 72, 81, 81, 81, 81, 96, 96, 96, 96, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106},
{51, 50, 37, 37, 54, 54, 52, 52, 56, 56, 56, 56, 71, 71, 71, 71, 81, 81, 81, 81, 96, 96, 96, 96, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105},
{37, 37, 36, 36, 54, 54, 51, 51, 55, 55, 55, 55, 65, 65, 65, 65, 82, 82, 82, 82, 96, 96, 96, 96, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104},
{36, 36, 35, 35, 38, 38, 38, 38, 53, 53, 53, 53, 66, 66, 66, 66, 87, 87, 87, 87, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97},
{36, 36, 35, 35, 37, 37, 37, 37, 50, 50, 50, 50, 70, 70, 70, 70, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81},
{20, 20, 20, 20, 51, 51, 53, 53, 50, 50, 50, 50, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64},
{19, 19, 19, 19, 34, 34, 34, 34, 52, 52, 52, 52, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64},
{18, 18, 18, 18, 35, 35, 35, 35, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48},
{18, 18, 18, 18, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32},
{17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16},
};
int leadingZeroBits = clz(ctx->t._gb.msb_cache | (size_t)1 << (SIZE_BIT - 9));
int suffix = ctx->t._gb.msb_cache >> ((leadingZeroBits + 2) ^ (SIZE_BIT - 1)) & 3;
int code = codes[endIdx + TotalCoeff - 4][leadingZeroBits * 4 + suffix];
int v = code >> 4;
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, v);
ctx->t._gb.lsb_cache <<= v;
return code & 15;
}
#endif
/**
* Parse a CAVLC or CABAC residual block without coeff_token nor
* coded_block_flag (9.2 and 9.3.2.3).
*
* For CAVLC, while the spec is quite convoluted level_prefix+level_suffix just
* look like Exp-Golomb codes, so we need only compute a code length (v) and an
* offset to add to the input bits.
* For CABAC, all bypass bits can be extracted using a binary division (!!).
* coeff_abs_level expects at most 2^(7+14)-14, i.e 41 bits as Exp-Golomb, so
* we can get all of them on 64 bit machines.
* While residual coefficients are not too critical to optimize, both CAVLC and
* CABAC versions of this function are designed to be simple and compact.
*/
static void CAFUNC(parse_residual_block, int startIdx, int endIdx, int token_or_cbf) {
#if !CABAC
int TrailingOnes = token_or_cbf & 3;
int TotalCoeff = token_or_cbf >> 2;
// parse all level values from end to start
int32_t level[16];
size_t signs = ~ctx->t._gb.msb_cache;
level[0] = (signs >> (SIZE_BIT - 2) & 2) - 1;
level[1] = (signs >> (SIZE_BIT - 3) & 2) - 1;
level[2] = (signs >> (SIZE_BIT - 4) & 2) - 1;
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, TrailingOnes);
ctx->t._gb.lsb_cache <<= TrailingOnes;
for (int i = TrailingOnes, suffixLength = 1, v, offset; i < TotalCoeff; i++) {
int level_prefix = clz(ctx->t._gb.msb_cache | (size_t)1 << (SIZE_BIT - 26)); // limit given in 9.2.2.1
if (level_prefix >= 15) {
v = level_prefix * 2 - 2;
offset = (15 << suffixLength) - 4096;
} else if (i > TrailingOnes || (TotalCoeff > 10 && TrailingOnes < 3)) {
v = level_prefix + suffixLength + 1;
offset = (level_prefix - 1) << suffixLength;
} else if (level_prefix < 14) {
v = level_prefix + 1;
offset = level_prefix - 1;
} else {
v = 19;
offset = -2;
}
#if SIZE_BIT == 32
v -= level_prefix;
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, level_prefix);
if (!(ctx->t._gb.lsb_cache <<= level_prefix))
refill(&ctx->t._gb, 0);
#endif
int levelCode = get_uv(&ctx->t._gb, v) + offset;
levelCode += (i == TrailingOnes && TrailingOnes < 3) * 2;
level[i] = (levelCode % 2) ? (-levelCode - 1) >> 1 : (levelCode + 2) >> 1;
suffixLength = min(suffixLength + (levelCode >= (3 << suffixLength)), 6);
}
// store level values at proper positions in memory
int zerosLeft = 0;
if (TotalCoeff <= endIdx - startIdx)
zerosLeft = parse_total_zeros(ctx, endIdx, TotalCoeff);
int8_t *scan = ctx->scan + startIdx + zerosLeft + TotalCoeff - 1;
ctx->c[*scan] = level[0];
for (int i = 1, v, run_before; i < TotalCoeff; i++) {
scan--;
if (zerosLeft > 0) {
int threeBits = ctx->t._gb.msb_cache >> (SIZE_BIT - 3);
if (zerosLeft <= 6) {
static int8_t run_before_codes[6][8] = {
{9, 9, 9, 9, 8, 8, 8, 8},
{18, 18, 17, 17, 8, 8, 8, 8},
{19, 19, 18, 18, 17, 17, 16, 16},
{28, 27, 18, 18, 17, 17, 16, 16},
{29, 28, 27, 26, 17, 17, 16, 16},
{25, 26, 28, 27, 30, 29, 16, 16},
};
int code = run_before_codes[zerosLeft - 1][threeBits];
v = code >> 3;
run_before = code & 7;
} else if (threeBits > 0) {
v = 3;
run_before = threeBits ^ 7; // 7 - threeBits
} else {
v = clz(ctx->t._gb.msb_cache) + 1;
run_before = min(v + 3, zerosLeft);
}
scan -= run_before;
zerosLeft -= run_before;
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, v);
ctx->t._gb.lsb_cache <<= v;
}
ctx->c[*scan] = level[i];
}
// trailing_ones_sign_flags+total_zeros+run_before consumed at most 31 bits, so we can delay refill here
if (!ctx->t._gb.lsb_cache)
refill(&ctx->t._gb, 0);
#else // CABAC
// significant_coeff_flags are stored as a bit mask
uint64_t significant_coeff_flags = 0;
int i = startIdx;
do {
if (get_ae(ctx, ctx->ctxIdxOffsets[1] + ctx->sig_inc[i])) {
significant_coeff_flags |= (uint64_t)1 << i;
if (get_ae(ctx, ctx->ctxIdxOffsets[2] + ctx->last_inc[i]))
break;
}
} while (++i < endIdx);
significant_coeff_flags |= (uint64_t)1 << i;
// Now loop on set bits to parse all non-zero coefficients.
int ctxIdx0 = ctx->ctxIdxOffsets[3] + 1;
int ctxIdx1 = ctx->ctxIdxOffsets[3] + 5;
do {
int coeff_level = 1;
if (!get_ae(ctx, ctxIdx0)) {
static const int8_t trans[5] = {0, 2, 3, 4, 4};
ctxIdx0 = ctx->ctxIdxOffsets[3] + trans[ctxIdx0 - ctx->ctxIdxOffsets[3]];
coeff_level = get_bypass(ctx) ? -coeff_level : coeff_level;
} else {
coeff_level++;
while (coeff_level < 15 && get_ae(ctx, ctxIdx1))
coeff_level++;
ctxIdx0 = ctx->ctxIdxOffsets[3];
ctxIdx1 = ctxIdx0 + ctx->coeff_abs_inc[ctxIdx1 - ctxIdx0 - 5];
#if SIZE_BIT == 32
if (coeff_level >= 15) {
// the biggest value to encode is 2^(14+7)-14, for which k=20 (see 9.3.2.3)
int k = 0;
while (get_bypass(ctx) && k < 20)
k++;
coeff_level = 1;
while (k--)
coeff_level += coeff_level + get_bypass(ctx);
coeff_level += 14;
}
coeff_level = get_bypass(ctx) ? -coeff_level : coeff_level;
#elif SIZE_BIT == 64
if (coeff_level >= 15) {
// we need at least 51 bits in codIOffset to get 42 bits with a division by 9 bits
int zeros = clz(ctx->t._gb.codIRange);
if (zeros > 64 - 51) {
ctx->t._gb.codIOffset = shld(get_bytes(&ctx->t._gb, zeros >> 3), ctx->t._gb.codIOffset, zeros & -8);
ctx->t._gb.codIRange <<= zeros & -8;
zeros &= 7;
}
ctx->t._gb.codIRange >>= 64 - 9 - zeros;
size_t quo = ctx->t._gb.codIOffset / ctx->t._gb.codIRange; // requested bits are in lsb and zeros+9 empty bits above
size_t rem = ctx->t._gb.codIOffset % ctx->t._gb.codIRange;
int k = clz(~quo << (zeros + 9) | (size_t)1 << (SIZE_BIT - 21));
int unused = 64 - 9 - zeros - k * 2 - 2;
coeff_level = 14 + (1 << k | (quo >> unused >> 1 & (((size_t)1 << k) - 1)));
coeff_level = (quo & (size_t)1 << unused) ? -coeff_level : coeff_level;
ctx->t._gb.codIOffset = (quo & (((size_t)1 << unused) - 1)) * ctx->t._gb.codIRange + rem;
ctx->t._gb.codIRange <<= unused;
} else {
coeff_level = get_bypass(ctx) ? -coeff_level : coeff_level;
}
#endif
}
// scale and store
int i = 63 - clz64(significant_coeff_flags);
ctx->c[ctx->scan[i]] = coeff_level; // beware, scan is transposed already
significant_coeff_flags &= ~((uint64_t)1 << i);
} while (significant_coeff_flags != 0);
#endif
for (int i = startIdx; i <= endIdx; i++)
print_slice(ctx, " %d", ctx->c[ctx->scan[i]]);
print_slice(ctx, "\n");
}
/**
* As its name says, parses mb_qp_delta (9.3.2.7 and 9.3.3.1.1.5).
*/
static void CAFUNC(parse_mb_qp_delta)
{
#if !CABAC
int mb_qp_delta = get_se16(&ctx->t._gb, -26, 25); // FIXME QpBdOffset
if (mb_qp_delta) {
int sum = ctx->t.QP[0] + mb_qp_delta;
int QP_Y = (sum < 0) ? sum + 52 : (sum >= 52) ? sum - 52 : sum;
mb->QP_s = ctx->t.QP_s = (i8x4){QP_Y, ctx->QP_C[0][QP_Y], ctx->QP_C[1][QP_Y]};
}
#else
int mb_qp_delta_nz = get_ae(ctx, 60 + ctx->mb_qp_delta_nz);
ctx->mb_qp_delta_nz = mb_qp_delta_nz;
int mb_qp_delta = 0;
if (mb_qp_delta_nz) {
unsigned count = 1, ctxIdx = 62;
while (get_ae(ctx, ctxIdx) && count < 52) // FIXME QpBdOffset
count++, ctxIdx = 63;
mb_qp_delta = count & 1 ? count / 2 + 1 : -(count / 2);
int sum = ctx->t.QP[0] + mb_qp_delta;
int QP_Y = (sum < 0) ? sum + 52 : (sum >= 52) ? sum - 52 : sum;
mb->QP_s = ctx->t.QP_s = (i8x4){QP_Y, ctx->QP_C[0][QP_Y], ctx->QP_C[1][QP_Y]};
}
#endif
print_slice(ctx, "mb_qp_delta: %d\n", mb_qp_delta);
}
/**
* Parsing for chroma 4:2:0 and 4:2:2 is put in a separate function to be
* tail-called from parse_NxN_residual and parse_Intra16x16_residual.
*/
static void CAFUNC(parse_chroma_residual)
{
// As in Intra16x16, DC blocks are parsed to ctx->c[0..15], then transformed to ctx->c[16..31]
if (mb->f.CodedBlockPatternChromaDC) { // valid also for 4:0:0
#if CABAC
ctx->ctxIdxOffsets_l = ctxIdxOffsets_chromaDC[0]; // FIXME 4:2:2
ctx->sig_inc_v[0] = ctx->last_inc_v[0] = sig_inc_chromaDC[0];
ctx->coeff_abs_inc_l = (i8x8){6, 7, 8, 8};
#endif
ctx->c_v[0] = ctx->c_v[1] = ctx->c_v[2] = ctx->c_v[3] = (i32x4){};
int token_or_cbf_Cb = CACOND(
parse_DC2x2_coeff_token_cavlc(ctx),
get_ae(ctx, ctx->ctxIdxOffsets[0] + ctx->inc.coded_block_flags_16x16[1]));
if (token_or_cbf_Cb) {
#if CABAC
mb->f.coded_block_flags_16x16[1] = 1;
#endif
print_slice(ctx, "Cb DC coeffLevels:");
ctx->scan_s = (i8x4){0, 4, 2, 6};
CACALL(parse_residual_block, 0, 3, token_or_cbf_Cb);
}
int token_or_cbf_Cr = CACOND(
parse_DC2x2_coeff_token_cavlc(ctx),
get_ae(ctx, ctx->ctxIdxOffsets[0] + ctx->inc.coded_block_flags_16x16[2]));
if (token_or_cbf_Cr) {
#if CABAC
mb->f.coded_block_flags_16x16[2] = 1;
#endif
print_slice(ctx, "Cr DC coeffLevels:");
ctx->scan_s = (i8x4){1, 5, 3, 7};
CACALL(parse_residual_block, 0, 3, token_or_cbf_Cr);
}
transform_dc2x2(ctx);
// Eight or sixteen 4x4 AC blocks for the Cb/Cr components
if (mb->f.CodedBlockPatternChromaAC) {
#if CABAC
ctx->sig_inc_v[0] = ctx->last_inc_v[0] = sig_inc_4x4;
ctx->ctxIdxOffsets_l = ctxIdxOffsets_chromaAC[0];
ctx->coeff_abs_inc_l = (i8x8){6, 7, 8, 9, 9};
#endif
ctx->scan_v[0] = scan_4x4[0];
for (int i4x4 = 0; i4x4 < 8; i4x4++) {
int iYCbCr = 1 + (i4x4 >> 2);
uint8_t *samples = ctx->samples_mb[iYCbCr] + y420[i4x4] * ctx->t.stride[1] + x420[i4x4];
int nA = *((int8_t *)mb->nC[1] + ctx->ACbCr_int8[i4x4]);
int nB = *((int8_t *)mb->nC[1] + ctx->BCbCr_int8[i4x4]);
int token_or_cbf = CACOND(parse_coeff_token_cavlc(ctx, i4x4 << 2 & 15, nA, nB),
get_ae(ctx, ctx->ctxIdxOffsets[0] + ctx->nC_inc[1][i4x4] + nA + nB * 2));
if (token_or_cbf) {
mb->nC[1][i4x4] = CACOND(token_or_cbf >> 2, 1);
ctx->c_v[0] = ctx->c_v[1] = ctx->c_v[2] = ctx->c_v[3] = (i32x4){};
print_slice(ctx, "Chroma AC coeffLevels[%d]:", i4x4);
CACALL(parse_residual_block, 1, 15, token_or_cbf);
add_idct4x4(ctx, iYCbCr, i4x4, samples);
} else {
add_dc4x4(ctx, iYCbCr, i4x4, samples);
}
}
}
}
}
/**
* Intra16x16 residual blocks have so many differences with Intra4x4 that they
* deserve their own function.
*/
static void CAFUNC(parse_Intra16x16_residual)
{
CACALL(parse_mb_qp_delta);
// Both AC and DC coefficients are initially parsed to ctx->c[0..15]
ctx->scan_v[0] = scan_4x4[0];
#if CABAC
ctx->sig_inc_v[0] = ctx->last_inc_v[0] = sig_inc_4x4;
#endif
for (int iYCbCr = 0; iYCbCr < 3; iYCbCr++) {
// Parse a DC block, then transform it to ctx->c[16..31]
#if CABAC
ctx->ctxIdxOffsets_l = ctxIdxOffsets_16x16DC[iYCbCr][0];
ctx->coeff_abs_inc_l = (i8x8){6, 7, 8, 9, 9};
#endif
int token_or_cbf = CACOND(
parse_coeff_token_cavlc(ctx, 0, mbA->nC[iYCbCr][5], mbB->nC[iYCbCr][10]),
get_ae(ctx, ctx->ctxIdxOffsets[0] + ctx->inc.coded_block_flags_16x16[iYCbCr]));
if (token_or_cbf) {
#if CABAC
mb->f.coded_block_flags_16x16[iYCbCr] = 1;
#endif
ctx->c_v[0] = ctx->c_v[1] = ctx->c_v[2] = ctx->c_v[3] = (i32x4){};
print_slice(ctx, "16x16 DC coeffLevels[%d]:", iYCbCr);
CACALL(parse_residual_block, 0, 15, token_or_cbf);
transform_dc4x4(ctx, iYCbCr);
} else {
if (mb->bits[0] & 1 << 5)
ctx->c_v[4] = ctx->c_v[5] = ctx->c_v[6] = ctx->c_v[7] = (i32x4){};
}
// All AC blocks pick a DC coeff, then go to ctx->c[1..15]
if (mb->bits[0] & 1 << 5) {
#if CABAC
ctx->ctxIdxOffsets_l = ctxIdxOffsets_16x16AC[iYCbCr][0];
ctx->coeff_abs_inc_l = (i8x8){6, 7, 8, 9, 9};
#endif
for (int i4x4 = 0; i4x4 < 16; i4x4++) {
uint8_t *samples = ctx->samples_mb[iYCbCr] + y444[i4x4] * ctx->t.stride[iYCbCr] + x444[i4x4];
int nA = *((int8_t *)mb->nC[iYCbCr] + ctx->A4x4_int8[i4x4]);
int nB = *((int8_t *)mb->nC[iYCbCr] + ctx->B4x4_int8[i4x4]);
int token_or_cbf = CACOND(parse_coeff_token_cavlc(ctx, i4x4, nA, nB),
get_ae(ctx, ctx->ctxIdxOffsets[0] + ctx->nC_inc[iYCbCr][i4x4] + nA + nB * 2));
if (token_or_cbf) {
mb->nC[iYCbCr][i4x4] = CACOND(token_or_cbf >> 2, 1);
ctx->c_v[0] = ctx->c_v[1] = ctx->c_v[2] = ctx->c_v[3] = (i32x4){};
print_slice(ctx, "16x16 AC coeffLevels[%d]:", iYCbCr * 16 + i4x4);
CACALL(parse_residual_block, 1, 15, token_or_cbf);
add_idct4x4(ctx, iYCbCr, i4x4, samples);
} else {
add_dc4x4(ctx, iYCbCr, i4x4, samples);
}
}
}
// here is how we share the decoding of luma coefficients with 4:4:4 modes
if (ctx->t.ChromaArrayType <3)
CAJUMP(parse_chroma_residual);
}
}
/**
* This block is dedicated to the parsing of Intra_NxN and Inter_NxN residual
* blocks, since they share much in common.
*/
static void CAFUNC(parse_NxN_residual)
{
static const int8_t Intra4x4Modes[9][16] = {
{I4x4_V_8 , I4x4_V_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_V_8 , I4x4_V_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_V_8 , I4x4_V_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_V_8 , I4x4_V_8 , I4x4_DCAB_8, I4x4_DCAB_8},
{I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8, I4x4_H_8 , I4x4_DCAB_8},
{I4x4_DC_8 , I4x4_DCA_8 , I4x4_DCB_8 , I4x4_DCAB_8, I4x4_DC_8 , I4x4_DCA_8 , I4x4_DCB_8 , I4x4_DCAB_8, I4x4_DC_8 , I4x4_DCA_8 , I4x4_DCB_8 , I4x4_DCAB_8, I4x4_DC_8 , I4x4_DCA_8 , I4x4_DCB_8 , I4x4_DCAB_8},
{I4x4_DDL_8, I4x4_DDL_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DDLC_8, I4x4_DDLC_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DDL_8 , I4x4_DDL_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DDLC_8, I4x4_DDLC_8, I4x4_DCAB_8, I4x4_DCAB_8},
{I4x4_DDR_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DDR_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8},
{I4x4_VR_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_VR_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8},
{I4x4_HD_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_HD_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8, I4x4_DCAB_8},
{I4x4_VL_8 , I4x4_VL_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_VLC_8 , I4x4_VLC_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_VL_8 , I4x4_VL_8 , I4x4_DCAB_8, I4x4_DCAB_8, I4x4_VLC_8 , I4x4_VLC_8 , I4x4_DCAB_8, I4x4_DCAB_8},
{I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8, I4x4_HU_8 , I4x4_DCAB_8},
};
static const int8_t Intra8x8Modes[9][16] = {
{I8x8_V_8 , I8x8_V_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_V_C_8 , I8x8_V_C_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_V_D_8 , I8x8_V_D_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_V_CD_8 , I8x8_V_CD_8 , I8x8_DC_AB_8, I8x8_DC_AB_8},
{I8x8_H_8 , I8x8_DC_AB_8, I8x8_H_8 , I8x8_DC_AB_8, I8x8_H_8 , I8x8_DC_AB_8, I8x8_H_8 , I8x8_DC_AB_8, I8x8_H_D_8 , I8x8_DC_AB_8, I8x8_H_D_8 , I8x8_DC_AB_8, I8x8_H_D_8 , I8x8_DC_AB_8 , I8x8_H_D_8 , I8x8_DC_AB_8},
{I8x8_DC_8 , I8x8_DC_A_8 , I8x8_DC_B_8 , I8x8_DC_AB_8, I8x8_DC_C_8 , I8x8_DC_AC_8, I8x8_DC_B_8 , I8x8_DC_AB_8, I8x8_DC_D_8 , I8x8_DC_AD_8, I8x8_DC_BD_8, I8x8_DC_AB_8, I8x8_DC_CD_8 , I8x8_DC_ACD_8, I8x8_DC_BD_8, I8x8_DC_AB_8},
{I8x8_DDL_8, I8x8_DDL_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DDL_C_8, I8x8_DDL_C_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DDL_D_8, I8x8_DDL_D_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DDL_CD_8, I8x8_DDL_CD_8, I8x8_DC_AB_8, I8x8_DC_AB_8},
{I8x8_DDR_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DDR_C_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8 , I8x8_DC_AB_8 , I8x8_DC_AB_8, I8x8_DC_AB_8},
{I8x8_VR_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_VR_C_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8 , I8x8_DC_AB_8 , I8x8_DC_AB_8, I8x8_DC_AB_8},
{I8x8_HD_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_HD_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_DC_AB_8 , I8x8_DC_AB_8 , I8x8_DC_AB_8, I8x8_DC_AB_8},
{I8x8_VL_8 , I8x8_VL_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_VL_C_8 , I8x8_VL_C_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_VL_D_8 , I8x8_VL_D_8 , I8x8_DC_AB_8, I8x8_DC_AB_8, I8x8_VL_CD_8 , I8x8_VL_CD_8 , I8x8_DC_AB_8, I8x8_DC_AB_8},
{I8x8_HU_8 , I8x8_DC_AB_8, I8x8_HU_8 , I8x8_DC_AB_8, I8x8_HU_8 , I8x8_DC_AB_8, I8x8_HU_8 , I8x8_DC_AB_8, I8x8_HU_D_8 , I8x8_DC_AB_8, I8x8_HU_D_8 , I8x8_DC_AB_8, I8x8_HU_D_8 , I8x8_DC_AB_8 , I8x8_HU_D_8 , I8x8_DC_AB_8},
};
if (mb->f.CodedBlockPatternChromaDC | (mb->bits[0] & 0xac))
CACALL(parse_mb_qp_delta);
#if CABAC
else
ctx->mb_qp_delta_nz = 0;
#endif
// next few blocks will share many parameters, so we cache them
for (int iYCbCr = 0; iYCbCr < 3; iYCbCr++) {
if (!mb->f.transform_size_8x8_flag) {
#if CABAC
ctx->ctxIdxOffsets_l = ctxIdxOffsets_4x4[iYCbCr][0];
ctx->coeff_abs_inc_l = (i8x8){6, 7, 8, 9, 9};
ctx->sig_inc_v[0] = ctx->last_inc_v[0] = sig_inc_4x4;
#endif
ctx->scan_v[0] = scan_4x4[0];
// Decoding directly follows parsing to avoid duplicate loops.
for (int i4x4 = 0; i4x4 < 16; i4x4++) {
size_t stride = ctx->t.stride[iYCbCr];
uint8_t *samples = ctx->samples_mb[iYCbCr] + y444[i4x4] * stride + x444[i4x4];
if (!mb->mbIsInterFlag)
decode_intra4x4(Intra4x4Modes[mb->Intra4x4PredMode[i4x4]][ctx->unavail4x4[i4x4]], samples, stride, ctx->t.samples_clip_v[iYCbCr]);
if (mb->bits[0] & 1 << bit8x8[i4x4 >> 2]) {
int nA = *((int8_t *)mb->nC[iYCbCr] + ctx->A4x4_int8[i4x4]);
int nB = *((int8_t *)mb->nC[iYCbCr] + ctx->B4x4_int8[i4x4]);
int token_or_cbf = CACOND(parse_coeff_token_cavlc(ctx, i4x4, nA, nB),
get_ae(ctx, ctx->ctxIdxOffsets[0] + ctx->nC_inc[iYCbCr][i4x4] + nA + nB * 2));
if (token_or_cbf) {
mb->nC[iYCbCr][i4x4] = CACOND(token_or_cbf >> 2, 1);
ctx->c_v[0] = ctx->c_v[1] = ctx->c_v[2] = ctx->c_v[3] = (i32x4){};
print_slice(ctx, "4x4 coeffLevels[%d]:", iYCbCr * 16 + i4x4);
CACALL(parse_residual_block, 0, 15, token_or_cbf);
// DC blocks are marginal here (about 16%) so we do not handle them separately
add_idct4x4(ctx, iYCbCr, -1, samples); // FIXME 4:4:4
}
}
}
} else {
#if CABAC
ctx->ctxIdxOffsets_l = ctxIdxOffsets_8x8[iYCbCr][0];
ctx->coeff_abs_inc_l = (i8x8){6, 7, 8, 9, 9};
ctx->sig_inc_v[0] = sig_inc_8x8[0][0];
ctx->last_inc_v[0] = last_inc_8x8[0];
ctx->scan_v[0] = scan_8x8_cabac[0][0];
#endif
for (int i8x8 = 0; i8x8 < 4; i8x8++) {
size_t stride = ctx->t.stride[iYCbCr];
uint8_t *samples = ctx->samples_mb[iYCbCr] + y444[i8x8 * 4] * stride + x444[i8x8 * 4];
if (!mb->mbIsInterFlag)
decode_intra8x8(Intra8x8Modes[mb->Intra4x4PredMode[i8x8 * 4 + 1]][ctx->unavail4x4[i8x8 * 5]], samples, stride, ctx->t.samples_clip_v[iYCbCr]);
if (mb->bits[0] & 1 << bit8x8[i8x8]) {
#if !CABAC
for (int i = 0; i < 16; i++)
ctx->c_v[i] = (i32x4){};
for (int i4x4 = 0; i4x4 < 4; i4x4++) {
ctx->scan_v[0] = scan_8x8_cavlc[0][i4x4];
int nA = *((int8_t *)mb->nC[iYCbCr] + ctx->A4x4_int8[i8x8 * 4 + i4x4]);
int nB = *((int8_t *)mb->nC[iYCbCr] + ctx->B4x4_int8[i8x8 * 4 + i4x4]);
int token = parse_coeff_token_cavlc(ctx, i8x8 * 4 + i4x4, nA, nB);
if (token) {
mb->nC[iYCbCr][i8x8 * 4 + i4x4] = token >> 2;
print_slice(ctx, "8x8 coeffLevels[%d][%d]:", iYCbCr * 4 + i8x8, i4x4);
parse_residual_block_cavlc(ctx, 0, 15, token);
}
}
add_idct8x8(ctx, iYCbCr, samples);
#else
if (ctx->t.ChromaArrayType < 3 || get_ae(ctx, ctx->ctxIdxOffsets[0] + (mb->bits[1] >> inc8x8[iYCbCr * 4 + i8x8] & 3))) {
for (int i = 0; i < 16; i++)
ctx->c_v[i] = (i32x4){};
mb->bits[1] |= 1 << bit8x8[iYCbCr * 4 + i8x8];
mb->nC_s[iYCbCr][i8x8] = 0x01010101;
print_slice(ctx, "8x8 coeffLevels[%d]:", iYCbCr * 4 + i8x8);
parse_residual_block_cabac(ctx, 0, 63, 1);
add_idct8x8(ctx, iYCbCr, samples);
}
#endif
}
}
}
// nice optimisation for 4:4:4 modes
if (ctx->t.ChromaArrayType <3)
CAJUMP(parse_chroma_residual);
}
}
/**
* Parses CodedBlockPatternLuma/Chroma (9.3.2.6 and 9.3.3.1.1.4).
*
* As with mb_qp_delta, coded_block_pattern is parsed in two distinct code
* paths, thus put in a distinct function.
*/
static void CAFUNC(parse_coded_block_pattern, const uint8_t *map_me)
{
// Luma prefix
#if !CABAC
int cbp = map_me[get_ue16(&ctx->t._gb, 47)];
mb->bits[0] |= cbp & 0xac;
#else
int bits = mb->bits[0];
bits |= get_ae(ctx, 76 - (bits & 3)) << 5;
bits |= get_ae(ctx, 76 - (bits >> 5 & 3)) << 3;
bits |= get_ae(ctx, 76 - (bits >> 4 & 3)) << 2;
bits |= get_ae(ctx, 76 - (bits >> 2 & 3)) << 7;
mb->bits[0] = bits;
#endif
// Chroma suffix
if ((ctx->t.ChromaArrayType == 1 || ctx->t.ChromaArrayType == 2) &&
CACOND(cbp & 3, get_ae(ctx, 77 + ctx->inc.CodedBlockPatternChromaDC)))
{
mb->f.CodedBlockPatternChromaDC = 1;
mb->f.CodedBlockPatternChromaAC = CACOND(cbp >> 1 & 1, get_ae(ctx, 81 + ctx->inc.CodedBlockPatternChromaAC));
}
print_slice(ctx, "coded_block_pattern: %u\n",
(mb->bits[0] >> 5 & 1) | (mb->bits[0] >> 2 & 2) | (mb->bits[0] & 4) | (mb->bits[0] >> 4 & 8) |
(mb->f.CodedBlockPatternChromaDC + mb->f.CodedBlockPatternChromaAC) << 4);
}
/**
* Parses intra_chroma_pred_mode (9.3.2.2 and 9.3.3.1.1.8).
*/
static void CAFUNC(parse_intra_chroma_pred_mode)
{
static const int8_t IntraChromaModes[4][4] = {
{IC8x8_DC_8, IC8x8_DCA_8, IC8x8_DCB_8, IC8x8_DCAB_8},
{IC8x8_H_8 , IC8x8_DCA_8, IC8x8_H_8 , IC8x8_DCAB_8},
{IC8x8_V_8 , IC8x8_V_8 , IC8x8_DCB_8, IC8x8_DCAB_8},
{IC8x8_P_8 , IC8x8_DCA_8, IC8x8_DCB_8, IC8x8_DCAB_8},
};
// Do not optimise too hard to keep the code understandable here.
int type = ctx->t.ChromaArrayType;
if (type == 1 || type == 2) {
#if !CABAC
int mode = get_ue16(&ctx->t._gb, 3);
#else
int ctxIdx = 64 + ctx->inc.intra_chroma_pred_mode_non_zero;
int mode = 0;
while (mode <3 && get_ae(ctx, ctxIdx))
mode++, ctxIdx = 67;
mb->f.intra_chroma_pred_mode_non_zero = (mode > 0);
#endif
print_slice(ctx, "intra_chroma_pred_mode: %u\n", mode);
decode_intraChroma(IntraChromaModes[mode][ctx->unavail4x4[0] & 3], ctx->samples_mb[1], ctx->t.stride[1] >> 1, ctx->t.samples_clip_v[1]);
}
}
/**
* Parses prev_intraNxN_pred_mode_flag and rem_intraNxN_pred_mode, and returns
* the given intra_pred_mode (7.3.5.1, 7.4.5.1, 8.3.1.1 and table 9-34).
*/
static int CAFUNC(parse_intraNxN_pred_mode, int luma4x4BlkIdx)
{
// dcPredModePredictedFlag is enforced by putting -2
int intraMxMPredModeA = *((int8_t *)mb->Intra4x4PredMode + ctx->A4x4_int8[luma4x4BlkIdx]);
int intraMxMPredModeB = *((int8_t *)mb->Intra4x4PredMode + ctx->B4x4_int8[luma4x4BlkIdx]);
int mode = abs(min(intraMxMPredModeA, intraMxMPredModeB));
int rem_intra_pred_mode = -1;
if (CACOND(!get_u1(&ctx->t._gb), !get_ae(ctx, 68))) {
#if !CABAC
rem_intra_pred_mode = get_uv(&ctx->t._gb, 3);
#else
rem_intra_pred_mode = get_ae(ctx, 69);
rem_intra_pred_mode += get_ae(ctx, 69) * 2;
rem_intra_pred_mode += get_ae(ctx, 69) * 4;
#endif
mode = rem_intra_pred_mode + (rem_intra_pred_mode >= mode);
}
print_slice(ctx, " %d", rem_intra_pred_mode);
return mode;
}
/**
* This function parses the syntax elements mb_type, transform_size_8x8_flag,
* intraNxN_pred_mode (from function), intra_chroma_pred_mode (from function),
* coded_block_pattern (from function) and PCM stuff for the current Intra
* macroblock. It proceeds to residual decoding through tail calls.
*
* In Intra4x4PredMode the special value -2 is used by unavailable blocks and
* Inter blocks with constrained_intra_pred_flag, to account for
* dcPredModePredictedFlag.
*/
static noinline void CAFUNC(parse_I_mb, int mb_type_or_ctxIdx)
{
static const uint8_t me_intra[48] = {174, 173, 172, 0, 45, 169, 165, 141, 44, 168, 164, 140, 46, 170, 166, 142, 1, 40, 36, 136, 132, 41, 37, 137, 133, 42, 38, 138, 134, 32, 8, 4, 128, 33, 9, 5, 129, 12, 160, 13, 161, 2, 34, 10, 6, 130, 14, 162};
// Intra-specific initialisations
#if CABAC
ctx->nC_inc_v[0] = ctx->nC_inc_v[1] = ctx->nC_inc_v[2] = (i8x16){};
if (ctx->unavail4x4[0] & 1) {
mb->bits[1] |= 0x111111; // FIXME 4:2:2
ctx->nC_inc_v[0] += (i8x16){1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0};
ctx->nC_inc_v[1] += (i8x16){1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ctx->inc.coded_block_flags_16x16_s |= 0x010101;
}
if (ctx->unavail4x4[0] & 2) {
mb->bits[1] |= 0x424242;
ctx->nC_inc_v[0] += (i8x16){2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ctx->nC_inc_v[1] += (i8x16){2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ctx->inc.coded_block_flags_16x16_s |= 0x020202;
}
#endif
mb->mbIsInterFlag = 0;
mb->f.inter_eqs_s = little_endian32(0x1b5fbbff);
mb->refIdx_l = -1;
mb->refPic_l = -1;
mb->mvs_v[0] = mb->mvs_v[1] = mb->mvs_v[2] = mb->mvs_v[3] = mb->mvs_v[4] = mb->mvs_v[5] = mb->mvs_v[6] = mb->mvs_v[7] = (i16x8){};
// I_NxN
if (CACOND(mb_type_or_ctxIdx == 0, !get_ae(ctx, mb_type_or_ctxIdx))) {
#if CABAC
mb->f.mb_type_I_NxN = 1;
print_slice(ctx, (mb_type_or_ctxIdx == 17) ? "mb_type: 5\n" : // in P slice
(mb_type_or_ctxIdx == 32) ? "mb_type: 23\n" : // in B slice
"mb_type: 0\n"); // in I slice
#endif
// 7.3.5, 7.4.5, 9.3.3.1.1.10 and table 9-34
int transform_size_8x8_flag = 0;
if (ctx->t.pps.transform_8x8_mode_flag) {
transform_size_8x8_flag = CACOND(get_u1(&ctx->t._gb), get_ae(ctx, 399 + ctx->inc.transform_size_8x8_flag));
print_slice(ctx, "transform_size_8x8_flag: %x\n", transform_size_8x8_flag);
}
print_slice(ctx, "rem_intra_pred_modes:");
mb->Intra4x4PredMode_v = (i8x16){-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2}; // default values when A/B is unavailable
if (transform_size_8x8_flag) {
mb->f.transform_size_8x8_flag = transform_size_8x8_flag;
for (int i = 0; i < 16; i += 4)
mb->Intra4x4PredMode[i + 1] = mb->Intra4x4PredMode[i + 2] = mb->Intra4x4PredMode[i + 3] = CACALL(parse_intraNxN_pred_mode, i);
} else {
for (int i = 0; i < 16; i++)
mb->Intra4x4PredMode[i] = CACALL(parse_intraNxN_pred_mode, i);
}
print_slice(ctx, "\n");
CACALL(parse_intra_chroma_pred_mode);
CACALL(parse_coded_block_pattern, me_intra);
CAJUMP(parse_NxN_residual);
// Intra_16x16
} else if (__builtin_expect(CACOND(mb_type_or_ctxIdx < 25, !cabac_terminate(ctx)), 1)) {
#if !CABAC
int mb_type = mb_type_or_ctxIdx - 1;
mb->bits[0] = mb_type > 11 ? 0xac : 0; // zeroes ref_idx_nz as byproduct
mb_type = mb_type > 11 ? mb_type - 12 : mb_type;
mb->f.CodedBlockPatternChromaDC = mb_type > 3;
mb->f.CodedBlockPatternChromaAC = mb_type >> 3;
int mode = mb_type & 3;
#else
int ctxIdx = max(mb_type_or_ctxIdx, 5);
mb->bits[0] = get_ae(ctx, ctxIdx + 1) ? 0xac : 0; // zeroes ref_idx_nz as byproduct
int CodedBlockPatternChromaDC = get_ae(ctx, ctxIdx + 2);
ctxIdx = max(ctxIdx, 6);
if (CodedBlockPatternChromaDC) {
mb->f.CodedBlockPatternChromaDC = 1;
mb->f.CodedBlockPatternChromaAC = get_ae(ctx, ctxIdx + 2);
}
int mode = get_ae(ctx, ctxIdx + 3) << 1;
mode += get_ae(ctx, max(ctxIdx + 3, 10));
print_slice(ctx, "mb_type: %u\n", (mb->bits[0] & 12) +
(mb->f.CodedBlockPatternChromaDC + mb->f.CodedBlockPatternChromaAC) * 4 +
mode + (ctxIdx == 17 ? 6 : ctxIdx == 32 ? 24 : 1));
#endif
// decode the samples before parsing residuals
static const int8_t Intra16x16Modes[4][4] = {
{I16x16_V_8 , I16x16_V_8 , I16x16_DCB_8, I16x16_DCAB_8},
{I16x16_H_8 , I16x16_DCA_8, I16x16_H_8 , I16x16_DCAB_8},
{I16x16_DC_8, I16x16_DCA_8, I16x16_DCB_8, I16x16_DCAB_8},
{I16x16_P_8 , I16x16_DCA_8, I16x16_DCB_8, I16x16_DCAB_8},
};
mb->Intra4x4PredMode_v = (i8x16){2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2};
decode_intra16x16(Intra16x16Modes[mode][ctx->unavail4x4[0] & 3], ctx->samples_mb[0], ctx->t.stride[0], ctx->t.samples_clip_v[0]); // FIXME 4:4:4
CACALL(parse_intra_chroma_pred_mode);
CAJUMP(parse_Intra16x16_residual);
// I_PCM
} else {
#if !CABAC
unsigned bits = (SIZE_BIT - 1 - ctz(ctx->t._gb.lsb_cache)) & 7;
ctx->t._gb.msb_cache = shld(ctx->t._gb.lsb_cache, ctx->t._gb.msb_cache, bits);
ctx->t._gb.lsb_cache = ctx->t._gb.lsb_cache << bits;
#else
print_slice(ctx, (mb_type_or_ctxIdx == 17) ? "mb_type: 30\n" : (mb_type_or_ctxIdx == 32) ? "mb_type: 48\n" : "mb_type: 25\n");
#endif
ctx->mb_qp_delta_nz = 0;
mb->f.v |= flags_twice.v; // ChromaDC, ChromaAC and flags_16x16, just what we need :)
mb->QP_s = (i8x4){0, ctx->QP_C[0][0], ctx->QP_C[1][0]};
mb->bits_l = (uint64_t)(i32x2){0xac, 0xacacac}; // FIXME 4:2:2
mb->nC_v[0] = mb->nC_v[1] = mb->nC_v[2] = CACOND(
((i8x16){16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16}),
((i8x16){1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}));
mb->Intra4x4PredMode_v = (i8x16){2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2};
// PCM is so rare that it should be compact rather than fast
int MbWidth = 16, y = 16;
for (int iYCbCr = 0; iYCbCr < 3; iYCbCr++) {
int BitDepth = ctz(ctx->t.samples_clip[iYCbCr][0] + 1);
for (uint8_t *p = ctx->samples_mb[iYCbCr]; y-- > 0; p += ctx->t.stride[iYCbCr]) {
if (BitDepth == 8) {
((uint32_t *)p)[0] = big_endian32(get_uv(&ctx->t._gb, 32));
((uint32_t *)p)[1] = big_endian32(get_uv(&ctx->t._gb, 32));
if (MbWidth == 16) {
((uint32_t *)p)[2] = big_endian32(get_uv(&ctx->t._gb, 32));
((uint32_t *)p)[3] = big_endian32(get_uv(&ctx->t._gb, 32));
}
} else for (int x = 0; x < MbWidth; x++) {
((uint16_t *)p)[x] = get_uv(&ctx->t._gb, BitDepth);
}
}
MbWidth = (ctx->t.ChromaArrayType < 3) ? 8 : 16;
y = (int8_t[4]){0, 8, 16, 16}[ctx->t.ChromaArrayType];
}
#if CABAC
cabac_start(ctx);
#endif
}
}
/**
* This function is the entry point to residual parsing in Inter macroblocks.
* It parses coded_block_pattern and transform_size_8x8_flag, that are parsed
* in different orders than Intra macroblocks.
*/
static void CAFUNC(parse_inter_residual)
{
static const uint8_t me_inter[48] = {0, 1, 32, 8, 4, 128, 2, 40, 36, 136, 132, 172, 174, 44, 168, 164, 140, 12, 160, 173, 42, 38, 138, 134, 34, 10, 6, 130, 46, 170, 166, 142, 33, 9, 5, 129, 41, 37, 137, 133, 45, 169, 165, 141, 13, 161, 14, 162};
CACALL(parse_coded_block_pattern, me_inter);
if ((mb->bits[0] & 0xac) && ctx->transform_8x8_mode_flag) {
mb->f.transform_size_8x8_flag = CACOND(get_u1(&ctx->t._gb), get_ae(ctx, 399 + ctx->inc.transform_size_8x8_flag));
print_slice(ctx, "transform_size_8x8_flag: %x\n", mb->f.transform_size_8x8_flag);
}
#if CABAC
ctx->nC_inc_v[0] = ctx->nC_inc_v[1] = ctx->nC_inc_v[2] = (i8x16){};
#endif
CAJUMP(parse_NxN_residual);
}
/**
* Parse both components of a motion vector (7.3.5.1, 7.4.5.1, 9.3.2.3,
* 9.3.3.1.1.7 and tables 9-34 and 9-39).
*
* As with residual coefficients, bypass bits can be extracted all at once
* using a binary division. The maximum mvd value is 2^15, i.e 26 bits as
* Exp-Golomb, so we need a single division on 64-bit machines and two on
* 32-bit machines.
*/
static i16x8 CAFUNC(parse_mvd_pair, const uint8_t *absMvd_lx, int i4x4) {
#if !CABAC
int x = get_se32(&ctx->t._gb, -32768, 32767);
int y = get_se32(&ctx->t._gb, -32768, 32767);
print_slice(ctx, "mvd[%lu]: %d,%d\n", absMvd_lx - mb->absMvd + i4x4, x, y);
return (i16x8){x, y};
#else
i16x8 res;
for (int ctxBase = 40, i = 0;;) {
int sum = absMvd_lx[ctx->absMvd_A[i4x4] + i] + absMvd_lx[ctx->absMvd_B[i4x4] + i];
int ctxIdx = ctxBase + (sum >= 3) + (sum > 32);
int mvd = 0;
ctxBase += 3;
while (mvd < 9 && get_ae(ctx, ctxIdx))
ctxIdx = ctxBase + min(mvd++, 3);
if (mvd >= 9) {
// we need at least 35 (or 21) bits in codIOffset to get 26 (or 12) bypass bits
int zeros = clz(ctx->t._gb.codIRange);
if (zeros > (SIZE_BIT == 64 ? 64 - 35 : 32 - 21)) {
ctx->t._gb.codIOffset = shld(get_bytes(&ctx->t._gb, zeros >> 3), ctx->t._gb.codIOffset, zeros & -8);
ctx->t._gb.codIRange <<= zeros & -8;
zeros &= 7;
}
// for 64-bit we could shift codIOffset down to 37 bits to help iterative hardware dividers, but that would make the code harder to maintain
ctx->t._gb.codIRange >>= SIZE_BIT - 9 - zeros;
size_t quo = ctx->t._gb.codIOffset / ctx->t._gb.codIRange; // requested bits are in lsb and zeros+9 empty bits above
size_t rem = ctx->t._gb.codIOffset % ctx->t._gb.codIRange;
int k = 3 + clz(~quo << (zeros + 9) | (size_t)1 << (SIZE_BIT - 12));
int unused = SIZE_BIT - 9 - zeros - k * 2 + 1;
#if SIZE_BIT == 32
if (__builtin_expect(unused < 0, 0)) { // FIXME needs testing
// refill codIOffset with 16 bits then make a new division
ctx->t._gb.codIOffset = shld(get_bytes(&ctx->t._gb, 2), rem, 16);
quo = shld((ctx->t._gb.codIOffset / ctx->t._gb.codIRange) << (SIZE_BIT - 16), quo, 16);
rem = ctx->t._gb.codIOffset % ctx->t._gb.codIRange;
unused += 16;
}
#endif
mvd = 1 + (1 << k | (quo >> unused >> 1 & (((size_t)1 << k) - 1)));
mvd = (quo & (size_t)1 << unused) ? -mvd : mvd;
ctx->t._gb.codIOffset = (quo & (((size_t)1 << unused) - 1)) * ctx->t._gb.codIRange + rem;
ctx->t._gb.codIRange <<= unused;
} else if (mvd > 0) {
mvd = get_bypass(ctx) ? -mvd : mvd;
}
if (++i == 2) {
res[1] = mvd;
print_slice(ctx, "mvd[%lu]: %d,%d\n", absMvd_lx - mb->absMvd + i4x4, res[0], mvd);