-
Notifications
You must be signed in to change notification settings - Fork 10
/
ObjectDetectionOpenCV.py
101 lines (80 loc) · 3.57 KB
/
ObjectDetectionOpenCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import cv2
import random
import math
import numpy as np
from collections import deque
from matplotlib import pyplot as plt
# capturing from the default webcam
cap = cv2.VideoCapture(0)
# deque to store all the points for traced path
center_points = deque()
# deque to store the redo command functionality
redo = deque()
# the range of colours to be detected
lowergreen = np.array([50,100,50])
uppergreen = np.array([90, 255, 255])
while (True):
# reading the frame
ret, frame = cap.read()
# flipping the frame
frame = cv2.flip(frame, 1)
if(ret):
# applying the Gaussian Blur
frame2 = cv2.GaussianBlur(frame, (5, 5), 0)
# converting the frame from BGR to HSV
hsv = cv2.cvtColor(frame2, cv2.COLOR_BGR2HSV)
# mask created using detected colours
mask = cv2.inRange(hsv, lowergreen, uppergreen)
# kernel for applying morphological transformation
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
# applying MORPH_OPEN
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# |----------------------|
# | getting the contours |
# |----------------------|
image, contours, hierarchy = cv2.findContours(opening.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if (len(contours)) > 0:
# getting the largest contours among all contours
largest_contour = max(contours, key=cv2.contourArea)
# getting the moments of the largest contour
moment = cv2.moments(largest_contour)
# calculating the center point of the largest contour
center = (int(moment['m10']/moment['m00']), int(moment['m01']/moment['m00']))
# circling the point
cv2.circle(frame, center, 10, (255, 255, 0), 1, cv2.LINE_AA)
# adding this center point to the center_points deque
center_points.appendleft(center)
# clearing the redo deque
redo.clear()
#----------------------------------------------------------------
for i in range(1, len(center_points)):
# draw line only if the distance between those points is less than 70px
b = random.randint(200, 245)
g = random.randint(100, 200)
if math.sqrt((center_points[i-1][0] - center_points[i][0])**2 + (center_points[i-1][1] - center_points[i][1])**2) < 50:
cv2.line(frame, center_points[i-1], center_points[i], (b, g, 0), 4, cv2.LINE_AA)
# showing the frames
cv2.imshow('frame', frame)
cv2.imshow('image', image)
# getting the input from the keyboard
k = cv2.waitKey(1) & 0xFF
# press 'q' to quit
if k == ord('q'):
cap.release()
break
# press 'u' for undo of 3 points
elif k == ord('u') and len(center_points) >= 3:
for i in range(1, 4):
temp1 = center_points.popleft()
redo.appendleft(temp1)
print('center', center_points)
print('redo', redo)
# press 'r' for redo of 3 points
elif k == ord('r') and len(redo) >=3:
for i in range(1, 4):
temp2 = redo.popleft()
center_points.appendleft(temp2)
print('center', center_points)
print('redo', redo)
cap.release()
cv2.destroyAllWindows()