forked from vcflib/vcflib
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrealign.py
276 lines (262 loc) · 12.1 KB
/
realign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# run as ctest .
#
# or
#
# cd ../test ; env PYTHONPATH=../build python3 tests/realign.py ; cd ../build
# cd ../test ; env PYTHONPATH=../build pytest tests/realign.py ; cd ../build
import unittest
from pyvcflib import *
import json
class RealignTest(unittest.TestCase):
# Returns True or False.
def test1(self):
vcf = VariantCallFile()
vcf.openFile("../samples/10158243.vcf")
var = Variant(vcf)
vcf.getNextVariant(var)
self.assertEqual(var.name,"grch38#chr4")
self.assertEqual(var.ref,'ACCCCCACCCCCACC')
self.assertEqual(var.alt,['ACC', 'AC', 'ACCCCCACCCCCAC', 'ACCCCCACC', 'ACA'])
# sw = var.legacy_parsedAlternates(False,False,False,10.0,-9.0,15.0,6.66,0.0,"","",False,False)
def test_sw_wf_compare(self):
vcf = VariantCallFile()
vcf.openFile("../samples/10134514.vcf")
var = Variant(vcf)
vcf.getNextVariant(var)
self.assertEqual(var.name,"grch38#chr4_10083863-10181258.vcf:grch38#chr4")
self.assertEqual(var.ref,'GGAGAATCCCAATTGATGG')
self.assertEqual(var.alt,['GTAGCATCCCAAGTGATGT', 'GTAGAATCCCAATTGATGT', 'GGAGCATCCCAATTGATGG', 'GG'])
# sw = var.legacy_parsedAlternates(False,False,False,10.0,-9.0,15.0,6.66,0.0,"","",False,False)
# for key, value in sw.items():
# print(f'SW allele key: {key}: ')
# for a in value:
# print(f' {a.position}/{a.ref}/{a.alt} ')
# note wf ignores paramaters
def test_wfbug2(self):
vcf = VariantCallFile()
vcf.openFile("../samples/10134514.vcf")
var = WfaVariant(vcf)
vcf.getNextVariant(var)
self.assertEqual(var.name,"grch38#chr4_10083863-10181258.vcf:grch38#chr4")
self.assertEqual(var.ref,'GGAGAATCCCAATTGATGG')
self.assertEqual(var.alt,['GTAGCATCCCAAGTGATGT', 'GTAGAATCCCAATTGATGT', 'GGAGCATCCCAATTGATGG', 'GG'])
wfa_params = wavefront_aligner_attr_default
# string paramString = "0,19,39,3,81,1";
wfa_params.distance_metric = distance_meric_t.gap_affine_2p
wfa_params.affine2p_penalties.match = 0
wfa_params.affine2p_penalties.mismatch = 19
wfa_params.affine2p_penalties.gap_opening1 = 39
wfa_params.affine2p_penalties.gap_extension1 = 3
wfa_params.affine2p_penalties.gap_opening2 = 81
wfa_params.affine2p_penalties.gap_extension2 = 1
wfa_params.alignment_scope = alignment_scope_t.compute_alignment;
# A dict is returned of alleles with variants and is_reversed
wf = var.wfa_parsedAlternates(True,True,False,"","",wfa_params,True,64,1,True)
print(f'ref={var.ref}')
print(var.info)
for key1, value1 in wf.items():
print(f'WF2 allele key: {key1}: ')
for a in value1[0]:
print(f' {a.position}:{a.ref}/{a.alt} ')
# Run a few tests
self.assertEqual(len(wf),5)
gg0 = wf['GG'][0][0]
gg1 = wf['GG'][0][1]
self.assertEqual(gg0.alt,"GG")
self.assertEqual(gg1.alt,"G")
self.assertEqual(wf['GGAGAATCCCAATTGATGG'][0][0].alt,"GGAGAATCCCAATTGATGG")
# Collect unique alleles
info = var.info
self.assertEqual(info['AC'],['11', '7', '1', '3'])
unique = {}
a = None
for alt0, wfvalue in wf.items(): # wfvalue is a compound of bool is_rev and alleles
is_rev = wfvalue[1]
for wfmatch in wfvalue[0]:
ref = wfmatch.ref
aligned = wfmatch.alt
wfpos = wfmatch.position
wftag = f'{alt0}:{wfpos}:{ref}/{aligned}'
if var.ref == aligned:
alt_index = -1
AC = None
AF = None
AN = None
else:
alt_index = var.alt.index(alt0) # Raises a ValueError if there is no such item
AC = int(info['AC'][alt_index])
AF = float(info['AF'][alt_index])
AN = int(info['AN'][0])
relpos = wfpos - var.pos
unique[wftag] = {
'pos0': var.pos,
'ref0': var.ref,
'alt0': alt0,
'ref1': ref,
'algn': aligned,
'pos1': wfpos,
'altidx': alt_index, # zero based
'relpos': relpos,
'AC': AC,
'AF': AF,
'AN': AN,
'is_rev': is_rev}
# Did we get all?
self.assertEqual(len(unique.items()),18)
# Display
uniqsorted = sorted(unique.items(),key = lambda r: r[1]['pos1'])
print(json.dumps(uniqsorted,indent=4))
# Check if all alleles were used by counting 'altidx'
idxs = set(map(lambda k: unique[k]['altidx'],unique.keys()))
self.assertEqual(len(idxs),len(var.alt)+1)
# Collect sample genotypes
samples = var.samples
gts = []
for sname in var.sampleNames:
# print(name,samples[name])
gt = (samples[sname]['GT'])[0].split("|")
# print(gt)
gts.append(list(map(lambda item: int(item) if item.isdigit() else None,gt)))
print(gts)
# for each variant translate genotypes
for tag,aln in uniqsorted:
# print(tag)
idx1 = aln['altidx']+1
# print(idx1)
genotypes = []
for gt in gts:
# print(gt)
genotypes.append(list(map(lambda item: item,gt)))
# print(list(genotypes))
# Now we neet to plug in the new indices
for gt in genotypes:
for i,g in enumerate(gt):
if g == idx1:
gt[i] = 1 # only one genotype in play
else:
if g != None:
gt[i] = 0
# print(list(genotypes))
aln['samples'] = genotypes
gts = None
print(uniqsorted[10])
self.assertEqual(uniqsorted[10][1]['samples'],[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, None], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 1], [0, 0], [0, 0], [0, 0], [0]])
# We are now going to merge records using a dict. From
#
# 10134515:G/T AC=7
# 10134515:G/T AC=11
# 10134516:AGAATCCCAATTGATGG/ AC=3
# 10134518:A/C AC=1
# 10134518:A/C AC=11
# 10134526:T/G AC=11
# 10134532:G/T AC=7
# 10134532:G/T AC=11
# into
# 10134515:G/T AC=18
# 10134516:AGAATCCCAATTGATGG/ AC=3
# 10134518:A/C AC=12
# 10134526:T/G AC=11
# 10134532:G/T AC=18
variants = {} # store new hash
k = None
v = None
for k,v in uniqsorted:
ref = v['ref1']
aligned = v['algn']
if ref != aligned:
ntag = f"{v['pos1']}:{ref}/{aligned}"
print(f"{ntag} AC={v['AC']}")
if ntag in variants:
variants[ntag]['AC'] += v['AC']
# Check AN number is equal so we can compute AF by addition
self.assertEqual(variants[ntag]['AN'],v['AN'])
variants[ntag]['AF'] += v['AF']
# Merge genotypes if they come from different alleles
if v['altidx'] != variants[ntag]['altidx']:
for i,samplesi in enumerate(variants[ntag]['samples']):
result = samplesi.copy()
g2 = v['samples'][i]
for j,samplej in enumerate(g2):
if g2[j] and g2[j]>0:
result[j] = g2[j]
# print(i,samplesi,v['samples'][i],result)
else:
variants[ntag] = v
print("into")
for key,v in variants.items():
print(f"{key} AC={v['AC']}")
self.assertEqual(len(variants),5)
self.assertEqual(variants['10134532:G/T']['AC'],18)
# Adjust TYPE field to set snp/mnp/ins/del
key = None
v = None
for key,v in variants.items():
ref_len = len(v['ref1'])
aln_len = len(v['algn'])
type = None
size = None
if aln_len < ref_len:
type = 'del'
size = ref_len - aln_len
elif aln_len > ref_len:
type = 'ins'
size = aln_len - ref_len
elif aln_len == ref_len:
if ref_len == 1:
type = 'snp'
else:
type = 'mnp'
size = aln_len
assert(size > 0)
variants[key]['type'] = type
variants[key]['size'] = size
# Set origin
print(v)
variants[key]['origin'] = f'{var.name}:{var.pos}'
# print(json.dumps(variants,indent=4))
# handle deletions. If ref length is larger than the WF matched
# allele length make this a missing genotype for all individual
# SNP/MNP calls that match the allele index and fall inside the
# deletion (region).
#
# The idea is that when a deletion exists for a sample there is
# no way a SNP/MNP gets called in that sample. So for this deletion:
# {'pos0': 10134514, 'ref0': 'GGAGAATCCCAATTGATGG', 'alt0': 'GG', 'ref1': 'GAGAATCCCAATTGATGG', 'algn': 'G', 'pos1': 10134515, 'altidx': 3, 'relpos': 1, 'AC': 3, 'AF': 0.0340909, 'AN': 88, 'is_rev': False, 'samples': [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, None], [0, 0], [0, 0], [0, 0], [1, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [1, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [1, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0]], 'type': 'del'}
# run through all other alleles and see if the genotype calls overlap. If
# the SNP/MNP overlaps the deletion make it a NULL call. It means running
# through all variants for every deletion. After discussion with Erik we
# turn all haplotypes to NULL.
type = None
for key,v in variants.items():
if v['type'] == 'del':
# for every deletion
del_ref_len = len(v['ref1'])
del_aln_len = len(v['algn'])
# del_len = del_ref_len - del_aln_len
del_pos1 = v['pos1']
del_size = v['size']
del_start_pos = del_pos1 + del_aln_len
# Make a range from the start of the deletion to the end
check_range = range(del_start_pos, del_start_pos + del_size)
check_samples = v['samples']
for key2,v2 in variants.items():
if v2['type'] == 'snp' or v2['type'] == 'mnp':
# for alignment check all SNPs/MNPs
pos1 = v2['pos1']
pos2 = pos1 + v2['size']
if pos1 in check_range or pos2 in check_range:
# compare all genotypes
for i,sample in enumerate(v2['samples']):
del_sample = check_samples[i]
nullify = False
if 1 in del_sample and 1 in sample:
nullify = True
print(i,sample,del_sample,nullify)
if nullify:
# v2['samples'][i] = [None if item == 1 else item for item in sample]
v2['samples'][i] = [None for item in sample]
# Recompute AC and AF using the actual genotypes
print("WIP")
print(variants)
if __name__ == '__main__':
unittest.main()