-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathday_10b.cpp
286 lines (264 loc) · 10.5 KB
/
day_10b.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#include <algorithm>
#include <numeric>
#include <fstream>
#include <iostream>
#include <regex>
#include <queue>
#include <string>
#include <unordered_set>
#include <vector>
// Idea (implemented):
// using the pipe as a boundary, fill each enclosed area giving each area and id and counting the number of points in the area
// traverse the pipe and cache the area_ids that are to the right of the directions of travel (plural as a turn might have 2 directions of travel)
// check if the points on the boundary are to the right or the left of the pipe
// If left, find the total count of the cached area ids, else the ids not in the cache.
// Another idea would be to expand area:
// Increase the size of the map to 2 * current_size - 1
// if x, y was the pipe, let 2 * row , 2 * col be the pipe, and fill in (2*row+1, 2*col) and (2*row, 2*col+1) but not (2*row+1, 2*col+1)
// this ensures that each point that is not enclosed by the loop will be connected to the outside edges
// flood fill from the outside edges and find the number of points that are neither filled nor parr of the pipe.
// Link to possible implementatio in python:
// https://www.reddit.com/r/adventofcode/comments/18evyu9/comment/kcs2oa9/?utm_source=share&utm_medium=web2x&context=3
// Another idea would be iterate over the map and check the number of the pipe is encountered in a row:
// If odd the the area is enclosed, if even then it is not
// Would need to handle points where the pipe is moving horizontally separately, maybe can rotate the map 90 degrees and repeat
// Another idea is to use Pick's theorm and the Shoelace formula
struct Point {
int row;
int col;
bool operator == (const Point& p) const {
return p.row == row && p.col == col;
}
bool operator != (const Point& p) const {
return !(p == *this);
}
Point(const int row = 0, const int col = 0) : row(row), col(col) {}
};
struct hasher {
std::size_t operator () (const Point& p) const {
return p.row * 10000 + p.col;
}
};
const std::vector<Point> deltas {
Point(-1, 0),
Point(0, 1),
Point(1, 0),
Point(0, -1)
};
bool in_limits(const Point& p, const std::vector<std::string>& map) {
return p.row >= 0 && p.row < map.size() && p.col >= 0 && p.col < map[p.row].size();
}
int bfs(const Point& p, std::vector<std::string>& map, std::vector<std::vector<int>>& groups, const std::vector<std::vector<bool>>& is_part_of_loop, const int group_id) {
std::queue<Point> q;
q.push(p);
int count = 0;
std::unordered_set<Point, hasher> seen;
while(!q.empty()) {
const auto current = q.front();
q.pop();
if (is_part_of_loop[current.row][current.col]) continue;
if (seen.find(current) != seen.end()) continue;
seen.insert(current);
count++;
groups[current.row][current.col] = group_id;
for (const auto& delta : deltas) {
Point new_point;
new_point.row = current.row + delta.row;
new_point.col = current.col + delta.col;
if (in_limits(new_point, map) && groups[new_point.row][new_point.col] == -1) {
q.push(new_point);
}
}
}
return count;
}
std::pair<Point, int> get_next_point(const Point& point, const Point& previous_point, const std::vector<std::string>& map, const std::vector<std::vector<std::array<int, 4>>>& direction_map) {
std::vector<Point> next_points;
const auto& point_directions = direction_map[point.row][point.col];
for (int i = 0; i < 4; i++) {
if (point_directions[i]) {
const Point next_point(point.row + deltas[i].row, point.col + deltas[i].col);
if (in_limits(next_point, map) && direction_map[next_point.row][next_point.col][(i + 2) % 4] && next_point != previous_point) {
return {next_point, i};
}
}
}
Point p(-1, -1);
std::cout << "This should not happen" << '\n';
exit(0);
return {p, 0};
}
struct PSD {
Point point;
int step; // No longer necessary
int direction; // For debug only
bool operator == (const PSD& psd) const {
return psd.point == point;
}
};
int main(int argc, char * argv[]) {
std::string input = "../input/day_10_input";
if (argc > 1) {
input = argv[1];
}
// N, E, S ,W
std::string line;
std::fstream file(input);
std::vector<std::string> map;
std::vector<std::vector<std::array<int, 4>>> direction_map; // Travel allowed in these directions (Order is NESW)
Point S;
Point previous(-1,-1);
while(std::getline(file, line)) {
map.push_back(line);
direction_map.push_back({});
direction_map.back().reserve(line.size() * 4);
for (const char c : line) {
if (c == '|') {
direction_map.back().push_back({{true, false, true, false}});
} else if (c == '-') {
direction_map.back().push_back({{false, true, false, true}});
} else if (c == 'L') {
direction_map.back().push_back({{true, true, false, false}});
} else if (c == 'J') {
direction_map.back().push_back({{true, false, false, true}});
} else if (c == '7') {
direction_map.back().push_back({{false, false, true, true}});
} else if (c == 'F') {
direction_map.back().push_back({{false, true, true, false}});
} else if (c == '.') {
direction_map.back().push_back({{false, false, false, false}});
} else if (c == 'S') {
// std::cout << "S set " << '\n';
direction_map.back().push_back({{true, true, true, true}});
S.row = direction_map.size() - 1;
for (int i = 0 ; i < line.size(); i++) {
if (line[i] == 'S') {
S.col = i;
break;
}
}
}
}
}
PSD current_psd;
current_psd.point = S;
current_psd.direction = 1; // Update direction of start, though not used
current_psd.step = 0;
std::vector<PSD> loop;
std::vector<std::vector<bool>> is_part_of_loop(map.size(), std::vector<bool>(map[0].size(), false));
while(current_psd.point != S || current_psd.step == 0) {
is_part_of_loop[current_psd.point.row][current_psd.point.col] = true;
const auto [new_current_point, direction] = get_next_point(current_psd.point, previous, map, direction_map);
current_psd.direction = direction;
loop.push_back(current_psd);
previous = current_psd.point;
current_psd.point = new_current_point;
current_psd.step++;
}
const std::vector<Point> point_to_the_right_of_direction {
Point(0, 1), // N->E
Point(1, 0), // E->S
Point(0, -1), // S->W
Point(-1, 0) // W->N
};
std::vector<std::vector<int>> groups(map.size(), std::vector<int>(map[0].size(), -1)); // Fill enclosed area
int group_id = 1;
std::unordered_map<int, int> counts;
for (int row = 0; row < groups.size(); row++) {
for (int col = 0; col < groups[0].size(); col++) {
if (groups[row][col] == -1) {
const auto p = Point(row, col);
counts[group_id] = bfs(p, map, groups, is_part_of_loop, group_id);
// std::cout << group_id << ": " << counts[group_id] << '\n';
group_id++;
}
}
}
// for (const auto& line : groups) {
// for (const auto& ele : line) {
// std::cout << ele << ' ';
// }
// std::cout << '\n';
// }
std::unordered_set<int> groups_to_the_right_of_loop;
for (int idx = 1; idx < loop.size(); idx++) {
const auto& p = loop[idx];
const auto deltas = std::vector<Point>{ // Change in location from previous to current and current to next; used to get direction. To refactor/optimise.
Point(loop[idx + 1].point.row - loop[idx].point.row, loop[idx + 1].point.col - loop[idx].point.col),
Point(loop[idx].point.row - loop[idx - 1].point.row, loop[idx].point.col - loop[idx - 1].point.col)
};
for (const auto& delta : deltas) {
int direction = -1;
// Change in location to direction (0123 -> NESW)
if (delta == Point(-1,0)) direction = 0;
else if (delta == Point(0,1)) direction = 1;
else if (delta == Point(1,0)) direction = 2;
else if (delta == Point(0,-1)) direction = 3;
// else {std::cout << "This should not happen"; exit(0);}
const auto delta_to_get_right_point = point_to_the_right_of_direction[direction];
const auto point_to_right = Point(p.point.row + delta_to_get_right_point.row, p.point.col + delta_to_get_right_point.col);
if(!in_limits(point_to_right, map)) continue;
if (groups[point_to_right.row][point_to_right.col] != -1) {
groups_to_the_right_of_loop.insert(groups[point_to_right.row][point_to_right.col]);
}
}
}
int total_right = 0;
for (const auto group_to_the_right_of_loop : groups_to_the_right_of_loop) {
// std::cout << "Groud id in loop: " << group_to_the_right_of_loop << ": " << counts[group_to_the_right_of_loop] << '\n';
total_right += counts[group_to_the_right_of_loop];
}
int total_left = 0;
for(const auto& [group_id, count] : counts) {
if (groups_to_the_right_of_loop.find(group_id) == groups_to_the_right_of_loop.end()) {
total_left += counts[group_id];
// if (counts[group_id] > 0) std::cout << "Groud id out loop: " << group_id << ": " << counts[group_id] << '\n';
}
}
// DEBUG:
// Update the map based on direction of points and whether inside or outside the loop using 'T' & 'O'
// for (int row = 0; row < groups.size(); row++) {
// for (int col = 0; col < groups[0].size(); col++) {
// if (groups[row][col] != -1) {
// if(groups_to_the_right_of_loop.find(groups[row][col]) != groups_to_the_right_of_loop.end()) {
// map[row][col] = 'O';
// } else {
// map[row][col] = 'I';
// }
// }
// if (is_part_of_loop[row][col]) {
// PSD psd;
// psd.point = Point(row, col);
// psd = *std::find(loop.begin(), loop.end(), psd);
// if (ps.direction == 0) {
// map[row][col] = '^';
// } else if (ps.direction == 1) {
// map[row][col] = '>';
// } else if (ps.direction == 2) {
// map[row][col] = 'v';
// } else if (ps.direction == 3){
// map[row][col] = '<';
// }
// }
// }
// }
// for (const auto& row : map) {
// for (const auto col : row) {
// std::cout << col;
// }
// std::cout << '\n';
// }
// Check whether groups on right are on boundary
for (const auto& row : groups) {
if (groups_to_the_right_of_loop.find(row[0]) != groups_to_the_right_of_loop.end()) {
std::cout << total_left << '\n';
return 0;
}
if (groups_to_the_right_of_loop.find(row[row.size() - 1]) != groups_to_the_right_of_loop.end()) {
std::cout << total_left << '\n';
return 0;
}
}
std::cout << total_right << '\n';
return 0;
}