|
| 1 | +#include <algorithm> |
| 2 | +#include <cmath> |
| 3 | +#include <fstream> |
| 4 | +#include <iostream> |
| 5 | +#include <numeric> |
| 6 | +#include <limits> |
| 7 | +#include <queue> |
| 8 | +#include <regex> |
| 9 | +#include <stack> |
| 10 | +#include <string> |
| 11 | +#include <unordered_set> |
| 12 | +#include <vector> |
| 13 | +#include <cassert> |
| 14 | + |
| 15 | +// Let (x0, y0, z0) and (vx0, vy0, vz0) be the position from and velocity with which the rock must be thrown |
| 16 | +// Let (xi, yi, zi) and (vxi, vyi, vzi) be the position and velocity of the ith hailstone, where i ranges from 1 to some `n` |
| 17 | +// hence there exists a time ti for every hailstone where the hailstone and the rock are at exactly the same position |
| 18 | +// hence |
| 19 | +// x0 + vx0 * ti = xi + vxi * ti ... (1) |
| 20 | +// => (x0 - xi) = - (vx0 - vxi) * ti |
| 21 | +// => (x0 - xi) / (vx0 - vxi) = -ti ... (2) (Assuming vx0 != vxi) |
| 22 | +// Similarly |
| 23 | +// (y0 - yi) / (vy0 - vyi) = - ti ... (3) |
| 24 | +// (z0 - zi) / (vz0 - vzi) = - ti ... (4) |
| 25 | +// Since the LHSs of (2) and (3) are both ti |
| 26 | +// (x0 - xi) / (vx0 - vxi) = (y0 - yi) / (vy0 - vyi) |
| 27 | +// (x0 - xi) * (vy0 - vyi) = (y0 - yi) * (vx0 - vxi) |
| 28 | +// x0 * vy0 - xi * vy0 - x0 * vyi + xi * vyi = y0 * vx0 - yi * vx0 - y0 * vxi + yi * vxi |
| 29 | +// This hold true for any i |
| 30 | +// Let i = 1: x0 * vy0 - x1 * vy0 - x0 * vy1 + x1 * vy1 = y0 * vx0 - y1 * vx0 - y0 * vx1 + y1 * vx1 ... (5) |
| 31 | +// Let i = 2: x0 * vy0 - x2 * vy0 - x0 * vy2 + x2 * vy2 = y0 * vx0 - y2 * vx0 - y0 * vx2 + y2 * vx2 ... (6) |
| 32 | +// Subtract (6) from (5): |
| 33 | +// (-x1 + x2) * vy0 + (-vy1 + vy2) * x0 + (x1 * vy1) - (x2 * vy2) |
| 34 | +// = (-y1 + y2) * vx0 + (-vx1 + vx2) * y0 +( y1 * vx1) + (y2 * vx2) |
| 35 | +// Rearranging the terms: |
| 36 | +// (-vy1 + vy2) * x0 - (-vx1 + vx2) * y0 - (-y1 + y2) * vx0 + (-x1 + x2) * vy0 |
| 37 | +// = -(x1 * vy1) + (x2 * vy2) +( y1 * vx1) + (y2 * vx2) |
| 38 | +// Where all the coefficients of the position and velocities of the hailstones 1 and 2 are known, so this becomes |
| 39 | +// c1 * x0 + c2 * y0 + c3 * vx0 + c4 * vy0 = c5 where ci is some known constant ... (7) |
| 40 | +// Also, while (7) was obtained using ((1) and (2)), observe that this sort of an equation can be reached even by using ((2) and (4)) or ((3) and (4)) |
| 41 | +// c6 * y0 + c7 * z0 + c8 * vy0 + c9 * vz0 = c10 where ci is some known constant |
| 42 | +// c11 * y0 + c12 * z0 + c13 * vy0 + c14 * vz0 = c15 where ci is some known constant |
| 43 | +// Also note that while here hailstones 1 and 2 were chosen, this can be done for any pair of hailstones |
| 44 | +// In (7) there are 4 unknowns, so by taking 4 pairs of hailstones, 4 equations can be obtained |
| 45 | +// These can then be put in a matrix: |
| 46 | +// [Some ][x0 ] = [Some other] |
| 47 | +// [matrix ][y0 ] [matrix ] |
| 48 | +// [of ][vx0] [of ] |
| 49 | +// [constants][vy0] [constants ] |
| 50 | +// Multiplying both sides by the inverse of first matrix gives |
| 51 | +// [x0 ] = Inverse([Some ]) * [Some other] |
| 52 | +// [y0 ] = [matrix ] [matrix ] |
| 53 | +// [vx0] = [of ] [of ] |
| 54 | +// [vy0] = [constants] [constants ] |
| 55 | +// This provides 4 out of th e6 unknowns |
| 56 | +// For the other 2 the same process is repeated, but with 2 equations this time with y and z instead of x and y |
| 57 | +// Only 2 equations are needed since the values of y have already been calculated, |
| 58 | +// but the values of y can be recalculated using 4 equations to sanity check the solution |
| 59 | +// This provides all the unknowns and hence the answer |
| 60 | + |
| 61 | +struct Hailstone { |
| 62 | + std::array<long double, 3> position; |
| 63 | + std::array<long double, 3> velocity; |
| 64 | +}; |
| 65 | + |
| 66 | +Hailstone parse_input(const std::string& line) { |
| 67 | + const std::regex pattern(R"((-?[0-9]+),(-?[0-9]+),(-?[0-9]+)@(-?[0-9]+),(-?[0-9]+),(-?[0-9]+))"); |
| 68 | + std::smatch match; |
| 69 | + std::regex_search(line, match, pattern); |
| 70 | + Hailstone hs; |
| 71 | + hs.position[0] = std::stod(match[1]); |
| 72 | + hs.position[1] = std::stod(match[2]); |
| 73 | + hs.position[2] = std::stod(match[3]); |
| 74 | + hs.velocity[0] = std::stod(match[4]); |
| 75 | + hs.velocity[1] = std::stod(match[5]); |
| 76 | + hs.velocity[2] = std::stod(match[6]); |
| 77 | + return hs; |
| 78 | +} |
| 79 | + |
| 80 | +template<size_t N> |
| 81 | +constexpr std::array<std::array<long double, N>, N> inverse_using_LU_decomp(std::array<std::array<long double, N>, N> mat) { |
| 82 | + std::array<std::array<long double, N>, N> p; |
| 83 | + std::array<std::array<long double, N>, N> inversed_data; |
| 84 | + for (int i = 0; i < N; i++) { |
| 85 | + for (int j = 0; j < N; j++) { |
| 86 | + if (i == j) p[i][j] = 1; |
| 87 | + else p[i][j] = 0; |
| 88 | + } |
| 89 | + } |
| 90 | + for (int i = 0; i < N - 1; i++){ |
| 91 | + auto max_idx = i; |
| 92 | + for (int k = i+1; k < N; k++) { |
| 93 | + if (std::abs(mat[k][i]) > std::abs(mat[max_idx][i])) { |
| 94 | + max_idx = k; |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + std::swap(mat[i], mat[max_idx]); |
| 99 | + std::swap(p[i], p[max_idx]); |
| 100 | + |
| 101 | + for (int j = i+1; j < N; j++) { |
| 102 | + mat[j][i] /= mat[i][i]; |
| 103 | + for (int k = i+1; k < N; k++) { |
| 104 | + mat[j][k] -= mat[j][i] * mat[i][k]; |
| 105 | + } |
| 106 | + } |
| 107 | + } |
| 108 | + |
| 109 | + for (int i_main = 0; i_main < N; i_main++) { |
| 110 | + std::array<long double, N> b; |
| 111 | + for (int j = 0; j < N; j++) { |
| 112 | + if (i_main == j) { |
| 113 | + b[j] = 1; |
| 114 | + } else { |
| 115 | + b[j] = 0; |
| 116 | + } |
| 117 | + } |
| 118 | + |
| 119 | + auto temp = b; |
| 120 | + for (int i = 0; i < N; i++) { |
| 121 | + temp[i] = std::inner_product(std::begin(p[i]), std::end(p[i]), std::begin(b), 0.); |
| 122 | + } |
| 123 | + b = temp; |
| 124 | + |
| 125 | + for (int i = 0; i < N-1; i++){ |
| 126 | + for (int j = i+1; j < N; j++) { |
| 127 | + b[j] -= mat[j][i] * b[i]; |
| 128 | + } |
| 129 | + } |
| 130 | + |
| 131 | + for (int i = N-1; i >=0; i--) { |
| 132 | + b[i] /= mat[i][i]; |
| 133 | + for (int j = 0; j < i; j++) { |
| 134 | + b[j] -= mat[j][i] * b[i]; |
| 135 | + } |
| 136 | + } |
| 137 | + |
| 138 | + for (int k =0; k < N; k++) { |
| 139 | + inversed_data[k][i_main] = b[k]; |
| 140 | + } |
| 141 | + } |
| 142 | + return inversed_data; |
| 143 | +} |
| 144 | + |
| 145 | +// The function get_equation below provides the cofficients of equation 7 |
| 146 | +// With the returned array containing c1, c2, c3, c4 and the returned double containing c5 |
| 147 | +// idx0 and idx1 help choose whether the function uses the coefficients of |
| 148 | +// (x,y) or (y,z) or (x,z) by using the values |
| 149 | +// (0,1) or (1,2) or (0,2) |
| 150 | +std::tuple<bool, std::array<long double, 4>, long double> get_equation(const Hailstone& hs1, const Hailstone& hs2, const int idx0, const int idx1) { |
| 151 | + if (hs1.position[idx1] == hs2.position[idx1]) return {false, std::array<long double, 4>(), 0}; |
| 152 | + if (hs1.velocity[idx1] == hs2.velocity[idx1]) return {false, std::array<long double, 4>(), 0}; |
| 153 | + const std::tuple<bool, std::array<long double, 4>, long double> ans = { |
| 154 | + true, |
| 155 | + { |
| 156 | + (hs2.velocity[idx1] - hs1.velocity[idx1]), // coeffecient of x0 if idx0 = 0 |
| 157 | + -(hs2.velocity[idx0] - hs1.velocity[idx0]), // coeffecient of y0 if idx1 = 1 |
| 158 | + -(hs2.position[idx1] - hs1.position[idx1]), // coeffecient of vx0 if idx0 = 0 |
| 159 | + (hs2.position[idx0] - hs1.position[idx0]) // coeffecient of vy0 if idx1 = 1 |
| 160 | + }, |
| 161 | + ((hs1.position[idx1] * hs1.velocity[idx0]) - (hs1.position[idx0] * hs1.velocity[idx1])) |
| 162 | + - ((hs2.position[idx1] * hs2.velocity[idx0]) - (hs2.position[idx0] * hs2.velocity[idx1])) // RHS |
| 163 | + }; |
| 164 | + // std::cout << std::get<1>(ans)[0] << ' ' |
| 165 | + // << std::get<1>(ans)[1] << ' ' |
| 166 | + // << std::get<1>(ans)[2] << ' ' |
| 167 | + // << std::get<1>(ans)[3] << " | " |
| 168 | + // << std::get<2>(ans) << '\n'; |
| 169 | + return ans; |
| 170 | +} |
| 171 | + |
| 172 | +int main(int argc, char * argv[]) { |
| 173 | + std::string input = "../input/day_24_input"; |
| 174 | + if (argc > 1) { |
| 175 | + input = argv[1]; |
| 176 | + } |
| 177 | + |
| 178 | + std::string line; |
| 179 | + std::fstream file(input); |
| 180 | + std::vector<Hailstone> hailstones; |
| 181 | + while(std::getline(file, line)) { |
| 182 | + line.erase(std::remove_if(line.begin(), line.end(), [](const char c) {return c == ' ';}), line.end()); |
| 183 | + hailstones.emplace_back(parse_input(line)); |
| 184 | + } |
| 185 | + std::array<long double, 3> ans_position; |
| 186 | + std::array<long double, 3> ans_velocity; |
| 187 | + // Calculating for (x,y) |
| 188 | + { |
| 189 | + int count = 0; |
| 190 | + std::array<std::array<long double, 4>, 4> main_lhs; |
| 191 | + std::array<long double, 4> main_rhs; |
| 192 | + for(int i = 0; i < hailstones.size()-1 && count < 4; i++) { |
| 193 | + for(int j = i+1; j < hailstones.size() && count < 4; j++) { |
| 194 | + const auto [valid, lhs, rhs] = get_equation(hailstones[i], hailstones[j], 0, 1); |
| 195 | + if (valid) { |
| 196 | + main_lhs[count] = lhs; |
| 197 | + main_rhs[count] = rhs; |
| 198 | + count++; |
| 199 | + } |
| 200 | + } |
| 201 | + } |
| 202 | + const auto inverse = inverse_using_LU_decomp<4>(main_lhs); |
| 203 | + std::array<long double, 4> answer_of_calcs {0,0,0,0}; |
| 204 | + for (int row = 0; row < 4; row++) { |
| 205 | + for (int col = 0; col < 4; col++) { |
| 206 | + answer_of_calcs[row] += inverse[row][col] * main_rhs[col]; |
| 207 | + } |
| 208 | + } |
| 209 | + ans_position[0] = answer_of_calcs[0]; |
| 210 | + ans_position[1] = answer_of_calcs[1]; |
| 211 | + ans_velocity[0] = answer_of_calcs[2]; |
| 212 | + ans_velocity[1] = answer_of_calcs[3]; |
| 213 | + } |
| 214 | + // Calculating for (x,z) |
| 215 | + { |
| 216 | + int count = 0; |
| 217 | + std::array<std::array<long double, 4>, 4> main_lhs; |
| 218 | + std::array<long double, 4> main_rhs; |
| 219 | + for(int i = 0; i < hailstones.size()-1 && count < 4; i++) { |
| 220 | + for(int j = i+1; j < hailstones.size() && count < 4; j++) { |
| 221 | + const auto [valid, lhs, rhs] = get_equation(hailstones[i], hailstones[j], 1, 2); |
| 222 | + if (valid) { |
| 223 | + main_lhs[count] = lhs; |
| 224 | + main_rhs[count] = rhs; |
| 225 | + count++; |
| 226 | + } |
| 227 | + } |
| 228 | + } |
| 229 | + const auto inverse = inverse_using_LU_decomp<4>(main_lhs); |
| 230 | + std::array<long double, 4> answer_of_calcs {0,0,0,0}; |
| 231 | + for (int row = 0; row < 4; row++) { |
| 232 | + for (int col = 0; col < 4; col++) { |
| 233 | + answer_of_calcs[row] += inverse[row][col] * main_rhs[col]; |
| 234 | + } |
| 235 | + } |
| 236 | + // assert(ans_position[0] == answer_of_calcs[0]); |
| 237 | + // assert(ans_position[2] == answer_of_calcs[2]); |
| 238 | + ans_position[2] = answer_of_calcs[1]; |
| 239 | + ans_velocity[2] = answer_of_calcs[3]; |
| 240 | + } |
| 241 | + // std::cout << "Answers: " << '\n'; |
| 242 | + // for (const auto& ele : ans_position) { |
| 243 | + // std::cout << std::fixed << ele << ' '; |
| 244 | + // } |
| 245 | + // std::cout << '\n'; |
| 246 | + // for (const auto& ele : ans_velocity) { |
| 247 | + // std::cout << std::fixed << ele << ' '; |
| 248 | + // } |
| 249 | + // std::cout << '\n'; |
| 250 | + long long answer = 0; |
| 251 | + for (const auto& ele : ans_position) { |
| 252 | + answer += static_cast<long long>(ele); |
| 253 | + } |
| 254 | + std::cout << std::fixed << answer << '\n'; |
| 255 | + return 0; |
| 256 | +} |
0 commit comments