-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_channle_last.py
225 lines (193 loc) · 7.2 KB
/
vae_channle_last.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gc
import math
import warnings
from contextlib import nullcontext
from copy import deepcopy
from pprint import pformat
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
gc.disable()
import tensordict as td
import torch
import torch.distributed as dist
import torch.nn.functional as F
import wandb
from colossalai.booster import Booster
from colossalai.utils import set_seed
from peft import LoraConfig
from tqdm import tqdm
from opensora.acceleration.checkpoint import set_grad_checkpoint
from opensora.acceleration.parallel_states import get_data_parallel_group
from opensora.datasets.dataloader import prepare_dataloader
from opensora.registry import DATASETS, MODELS, build_module
# from opensora.utils.ckpt import CheckpointIO, model_sharding, record_model_param_shape, rm_checkpoints
from opensora.utils.config import config_to_name, create_experiment_workspace, parse_configs
from opensora.utils.logger import create_logger
from opensora.utils.misc import (
NsysProfiler,
Timers,
all_reduce_mean,
create_tensorboard_writer,
is_log_process,
is_pipeline_enabled,
log_cuda_max_memory,
log_cuda_memory,
log_model_params,
to_torch_dtype,
)
from opensora.utils.optimizer import create_lr_scheduler, create_optimizer
from opensora.utils.sampling import get_res_lin_function, pack, prepare, time_shift
from opensora.utils.train import create_colossalai_plugin, setup_device
from time import time
def main():
# ======================================================
# 1. configs & runtime variables
# ======================================================
# == parse configs ==
cfg = parse_configs()
# == get dtype & device ==
dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
device, coordinator = setup_device()
# checkpoint_io = CheckpointIO()
set_seed(cfg.get("seed", 1024))
# == init ColossalAI booster ==
plugin_type = cfg.get("plugin", "zero2")
plugin_config = cfg.get("plugin_config", {})
plugin = create_colossalai_plugin(
plugin=plugin_type,
dtype=cfg.get("dtype", "bf16"),
grad_clip=cfg.get("grad_clip", 0),
**plugin_config,
)
booster = Booster(plugin=plugin)
# set_torch_compile_flags()
# == init exp_dir ==
exp_name, exp_dir = create_experiment_workspace(
cfg.get("outputs", "./outputs"),
model_name=config_to_name(cfg),
config=cfg.to_dict(),
exp_name=cfg.get("exp_name", None), # useful for automatic restart to specify the exp_name
)
# == init logger, tensorboard & wandb ==
logger = create_logger(exp_dir)
logger.info("Training configuration:\n %s", pformat(cfg.to_dict()))
tb_writer = None
if coordinator.is_master():
tb_writer = create_tensorboard_writer(exp_dir)
if cfg.get("wandb", False):
wandb.init(
project=cfg.get("wandb_project", "Open-Sora"),
name=exp_name,
config=cfg.to_dict(),
dir=exp_dir,
)
# ======================================================
# 2. build dataset and dataloader
# ======================================================
logger.info("Building dataset...")
# == build dataset ==
dataset = build_module(cfg.dataset, DATASETS)
logger.info("Dataset contains %s samples.", len(dataset))
# == build dataloader ==
dataloader_args = dict(
dataset=dataset,
batch_size=cfg.get("batch_size", None),
num_workers=cfg.get("num_workers", 4),
seed=cfg.get("seed", 1024),
shuffle=True,
drop_last=True,
pin_memory=cfg.get("pin_memory", True),
process_group=get_data_parallel_group(),
prefetch_factor=cfg.get("prefetch_factor", None),
)
dataloader, sampler = prepare_dataloader(
bucket_config=cfg.get("bucket_config", None),
num_bucket_build_workers=cfg.get("num_bucket_build_workers", 1),
**dataloader_args,
)
# num_steps_per_epoch = len(dataloader)
dataloader_iter = iter(dataloader)
print(
"==debug== dataloader_iter",
)
# == buildn autoencoder ==
model_ae = build_module(cfg.ae, MODELS, device_map=device, torch_dtype=dtype).eval().requires_grad_(False)
del model_ae.decoder
log_cuda_memory("autoencoder")
log_model_params(model_ae)
for name, param in model_ae.named_parameters():
if param.ndim == 4:
param.data = param.to(memory_format=torch.channels_last)
elif param.ndim == 5:
param.data = param.to(memory_format=torch.channels_last_3d)
model_ae = torch.compile(model_ae, mode="max-autotune", fullgraph=True, dynamic=True)
# == boosting ==
torch.set_default_dtype(dtype)
torch.set_default_dtype(torch.float)
log_cuda_memory("boost")
timers = Timers(
record_time=cfg.get("record_time", False),
record_barrier=cfg.get("record_barrier", False),
)
nsys = NsysProfiler(warmup_steps=2, num_steps=30, enabled=False)
dummy_data = cfg.get("dummy_data", False)
if dummy_data:
print("==debug== using dummy_data")
# debug with real data loader
@torch.no_grad()
def prepare_inputs(batch, dummy_data=False):
inp = dict()
if not dummy_data:
x = batch.pop("video")
bs = x.shape[0]
else:
x = batch["video"]
bs = x.shape[0]
x = x.to(memory_format=torch.channels_last_3d)
# == encode video ==
with nsys.range("encode_video"), timers["encode_video"]:
x_0 = model_ae.encode(x)
return (inp, x_0)
# =======================================================
# 6. training loop
# =======================================================
dist.barrier()
epoch = 0
start_step = 0
step = 0
batch = {}
size = [8, 3, 32, 192, 336]
x1 = torch.rand(size, dtype=dtype, device=device)
# prefetch one for non-blocking data loading
def fetch_data():
batch_ = next(dataloader_iter)
batch_["video"] = batch_["video"].to(device, dtype, non_blocking=True)
batch_["video"] = td.TensorDict({"video": batch_["video"]}).to(
device=device, dtype=dtype, non_blocking_pin=True, num_threads=4
)
return batch_
num_steps_per_epoch = 100000
total_time = []
for _ in range(start_step, num_steps_per_epoch):
nsys.step()
start_time = time()
# == load data ===
with nsys.range("load_video"), timers["load_data"]:
# batch_ = fetch_data()
if not dummy_data:
pass
else:
step += 1
batch["video"] = x1
# == run iter ==
with nsys.range("iter"), timers["iter"]:
prepare_inputs(batch, dummy_data=dummy_data)
dist.barrier()
step_time = time() - start_time
total_time.append(step_time)
if step % 10 == 0:
avg_time = sum(total_time[-10:]) / len(total_time[-10:])
print(f"Step {step}/{num_steps_per_epoch}: Avg time per iter (last 10 steps): {avg_time:.4f}s")
print(timers.to_str(0, step))
if __name__ == "__main__":
main()