-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetect Manufacturing Defects using Visual Inspection AI_ Challenge Lab.txt
66 lines (50 loc) · 2.29 KB
/
Detect Manufacturing Defects using Visual Inspection AI_ Challenge Lab.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
export CONTAINER_NAME=
export btecky1=
export btecky2=
ZONE="$(gcloud compute instances list --project=$DEVSHELL_PROJECT_ID --format='value(ZONE)' | head -n 1)"
# cat > env_vars.sh <<'EOF'
# export CONTAINER_NAME=$CONTAINER_NAME
# export btecky1=$btecky1
# export btecky2=$btecky2
# EOF
echo "export CONTAINER_NAME=$CONTAINER_NAME" > env_vars.sh
echo "export btecky1=$btecky1" >> env_vars.sh
echo "export btecky2=$btecky2" >> env_vars.sh
source env_vars.sh
cat > prepare_disk.sh <<'EOF_END'
# Source the environment variables
source /tmp/env_vars.sh
export mobile_inspection=gcr.io/ql-shared-resources-test/defect_solution@sha256:776fd8c65304ac017f5b9a986a1b8189695b7abbff6aa0e4ef693c46c7122f4c
export VISERVING_CPU_DOCKER_WITH_MODEL=${mobile_inspection}
export HTTP_PORT=8602
export LOCAL_METRIC_PORT=8603
docker pull ${VISERVING_CPU_DOCKER_WITH_MODEL}
docker run -v /secrets:/secrets --rm -d --name "$CONTAINER_NAME" \
--network="host" \
-p ${HTTP_PORT}:8602 \
-p ${LOCAL_METRIC_PORT}:8603 \
-t ${VISERVING_CPU_DOCKER_WITH_MODEL} \
--use_default_credentials=false \
--service_account_credentials_json=/secrets/assembly-usage-reporter.json
gsutil cp gs://cloud-training/gsp895/prediction_script.py .
export PROJECT_ID=$(gcloud config get-value core/project)
gsutil mb gs://${PROJECT_ID}
gsutil -m cp gs://cloud-training/gsp897/cosmetic-test-data/*.png \
gs://${PROJECT_ID}/cosmetic-test-data/
gsutil cp gs://${PROJECT_ID}/cosmetic-test-data/IMG_07703.png .
sudo apt install python3 -y
sudo apt install python3-pip -y
sudo apt install python3.11-venv -y
python3 -m venv create myvenv
source myvenv/bin/activate
pip install absl-py
pip install numpy
pip install requests
python3 ./prediction_script.py --input_image_file=./IMG_07703.png --port=8602 --output_result_file=${btecky1}
export PROJECT_ID=$(gcloud config get-value core/project)
gsutil cp gs://${PROJECT_ID}/cosmetic-test-data/IMG_0769.png .
python3 ./prediction_script.py --input_image_file=./IMG_0769.png --port=8602 --output_result_file=${btecky2}
EOF_END
gcloud compute scp env_vars.sh lab-vm:/tmp --project=$DEVSHELL_PROJECT_ID --zone=$ZONE --quiet
gcloud compute scp prepare_disk.sh lab-vm:/tmp --project=$DEVSHELL_PROJECT_ID --zone=$ZONE --quiet
gcloud compute ssh lab-vm --project=$DEVSHELL_PROJECT_ID --zone=$ZONE --quiet --command="bash /tmp/prepare_disk.sh"