-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_np.py
138 lines (112 loc) · 4.63 KB
/
model_np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import logging
import random
def softmax(a):
e = np.exp(a)
return e / e.sum(axis=1)[:, np.newaxis]
class LinearClassificationModel(object):
def __init__(self, optimizer, epochs=None, batch_size=None, tolerance=None):
self.w = None
self.optimizer = optimizer
self.epochs = epochs
self.batch_size = batch_size
self.tolerance = tolerance
def save(self, path):
np.save(path, self.w)
logging.info('Saving model to %s success [K = %d, M = %d]' % (path, self.w.shape[0], self.w.shape[1]))
def load(self, path):
self.w = np.load(path)
self.n_classes = self.w.shape[0]
self.n_features = self.w.shape[1]
logging.info('Loading model from %s success [K = %d, M = %d]' % (path, self.n_classes, self.n_features))
def test(self, sess, x_):
return softmax(x_.dot(self.w.T))
def eval(self, sess, x_, t_):
return float(np.equal(self.test(sess, x_).argmax(axis=1), t_.argmax(axis=1)).sum()) / len(t_)
def fit(self, sess, x_, t_):
self.n_classes = t_.shape[1]
self.n_features = x_.shape[1]
# Initialize weight for each class
self.w = np.zeros([self.n_classes, self.n_features])
if self.optimizer == 'seq':
self._fit_sequential(sess, x_, t_, self.tolerance, self.epochs, self.batch_size)
else:
self._fit(sess, x_, t_)
def _fit(self, sess, x_, t_):
self._optimize(sess, x_, t_)
acc = self.eval(sess, x_, t_)
logging.info('Training accuracy = %f, error rate = %f' % (acc, 1.0 - acc))
def _fit_sequential(self, sess, x_, t_, tolerance, epochs, batch_size):
assert len(x_.shape) == 2
N = len(x_)
M = self.n_features
K = self.n_classes
# Iterative optimize
indices = range(N)
for epoch in xrange(epochs):
np.random.shuffle(indices)
for begin in xrange(0, N, batch_size):
end = min(N, begin + batch_size)
x_train = x_[indices[begin:end]]
t_train = t_[indices[begin:end]]
self._optimize(sess, x_train, t_train)
acc = self.eval(sess, x_, t_)
logging.info('Epoch %d Training accuracy = %f, error rate = %f' % (epoch, acc, 1.0 - acc))
if 1.0 - acc <= tolerance:
logging.info('Target error rate reached.')
break
def _optimize(sess, x_, t_):
raise NotImplementedError()
class ProbabilisticDiscriminativeModel(LinearClassificationModel):
def __init__(self, lr=0.01, epochs=20, batch_size=128, tolerance=0.01):
super(ProbabilisticDiscriminativeModel, self).__init__('seq', epochs, batch_size, tolerance)
self.lr = lr
def _optimize(self, sess, x_, t_):
N, M = x_.shape
K = self.n_classes
x = np.asarray(x_)
y = np.asarray(self.test(sess, x_))
t = np.asarray(t_)
# Calculate gradient
grad = np.zeros([K, M])
for j in xrange(K):
for n in xrange(N):
grad[j, :] += (y[n,j] - t[n,j]) * x[n]
grad = grad.flatten()
# Calculate Hessian matrix
I = np.identity(K)
H = np.zeros([K*M, K*M])
for j in xrange(K):
for k in xrange(K):
D_wjk = np.zeros([M, M])
for n in xrange(N):
D_wjk += y[n,k] * (I[k,j] - y[n,j]) * x.T.dot(x)
H[j*(M):(j+1)*M, (k)*M:(k+1)*M] = D_wjk
try:
H_inv = np.linalg.pinv(H)
except np.linalg.linalg.LinAlgError:
return
# Update weight
w_old = self.w.flatten()
w_new = w_old - self.lr * H_inv.dot(grad)
w_new = w_new.reshape([K, M])
self.w = w_new
class ProbabilisticGenerativeModel(LinearClassificationModel):
def __init__(self):
super(ProbabilisticGenerativeModel, self).__init__(optimizer='once')
def _optimize(self, sess, x_, t_):
N, M = x_.shape
K = self.n_classes
priors = np.zeros([K, 1])
means = np.zeros([K, M-1])
sigma = np.zeros([M-1, M-1])
for k in xrange(K):
x_k = x_[t_[:, k] == 1][:, 1:]
n_k = float(len(x_k))
priors[k] = n_k / N
means[k] = np.mean(x_k, axis=0)
sigma += priors[k] * ((x_k - means[k]).T.dot(x_k - means[k])) / n_k
sigma_inv = np.asarray(np.linalg.pinv(sigma))
for k in xrange(K):
self.w[k, 1:] = (sigma_inv.dot(means[k]))
self.w[k, 0] = (-1.0 / 2) * means[k].T.dot(sigma_inv.dot(means[k])) + np.log(priors[k])