-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot.py
31 lines (22 loc) · 898 Bytes
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import matplotlib.pyplot as plt
import numpy as np
def plot_decision_boundary(func, x_, t_, x_min, y_min, x_max, y_max, h):
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = func(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(x_[:, 0], x_[:, 1], c=t_, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('x1')
plt.ylabel('x2')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
if __name__ == '__main__':
plot_decision_boundary(None, 0, 0, 255, 255, 10)