-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathestimator.py
146 lines (112 loc) · 4.13 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from sklearn import preprocessing,neural_network,model_selection,datasets,cluster,externals,svm
import random
import matplotlib.pyplot as plt
import numpy as np
import os
STORESIZE = 5
SAVE_PATH = "/home/sauron/MAGI/stored_data/sphinx_mcf/"
class Estimator:
def __init__(self,accuracy, groupName, eps = 0.3, min_samples = 10):
self.scaler = None
self.groupName = groupName
if os.access(SAVE_PATH + "model_" + groupName, os.F_OK):
self.load_model("model_" + groupName)
else:
print("load fail,new a model")
self.nn = neural_network.MLPRegressor(alpha=0.0001,max_iter=1000,tol=1e-5,activation='tanh',learning_rate_init=0.001,hidden_layer_sizes=(30,),random_state=1)
self.svm = svm.SVC(kernel='linear')
self.accuracy_demand = accuracy
self.curr_score = 0
self.eps = eps
self.min_samples = min_samples
self.count = 0
def find_sv_i(self, train_X, train_y):
#print(train_X)
#print(train_y)
self.svm.fit(np.array(train_X),np.array(train_y))
#print("support:")
#print(self.svm.support_)
return self.svm.support_
def find_sv_statisfy_v(self, train_X, train_y, sla):
#print("find_sv_statisy_v")
#print(train_X)
#print(train_y)
res = []
find_y = []
true_count = False
false_count = False
for i in range(len(train_X)):
if float(train_y[i]) > sla:
find_y.append(1)
true_count = True
else:
find_y.append(0)
false_count = True
if true_count and false_count:
indexS = self.find_sv_i(train_X, find_y)
for i in indexS:
if float(train_y[i]) > sla:
res.append(train_X[i])
elif true_count:# randomly select 10
for i in range(10):
if float(train_y[i]) > sla:
res.append(train_X[i])
else:
return -1
return res
def store_model(self, name):
externals.joblib.dump(self.nn,SAVE_PATH + name)
def load_model(self, name):
self.nn = externals.joblib.load(SAVE_PATH + name)
def workable(self):
if self.accuracy_demand < self.curr_score:
return True
return False
def scaler_init(self, X):
self.scaler = preprocessing.Normalizer()
self.scaler.fit(X)
def pre_data(self, X, y):
X = np.array(X)
y = np.array(y)
X = self.scaler.transform(X)
if X.ndim <= 100:
return X,y
#Xy = np.column_stack((X,y))
db = cluster.DBSCAN(eps=self.eps, min_samples=self.min_samples).fit(X)
noise = []
for i in range(len(db.labels_)):
if db.labels_[i] == -1:
noise.append(i)
return np.delete(X, noise, 0), np.delete(y, noise, 0)
#X = Xy[:, 0: - 1]
#y = Xy[:, -1]
def train(self,X,y):
if X.shape[0] < 20:
print("Err: No enough data for training")
return -1
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, random_state=random.randint(0,10))
self.nn.partial_fit(X_train,y_train)
self.curr_score = self.nn.score(X_test,y_test)
print("curr_score:" + str(self.curr_score))
self.count += 1
if self.count == STORESIZE:
self.count = 0
self.store_model("model_" + self.groupName)
#self.curr_score = model_selection.cross_val_score(self.model,X_train,Y_train,cv=5,scoring='accuracy').mean()
def inference(self, X):
return float(self.nn.predict([X])[0])
if __name__ == '__main__':
loaded_data = datasets.load_boston()
data_x = loaded_data.data
data_y = loaded_data.target
ss = svm.SVC(kernel='linear')
ss.fit(data_x,data_y)
#nn = externals.joblib.load(SAVE_PATH + "model_sta")
#print(data_y)
e = Estimator(0.3,"sta")
e.scaler_init(data_x)
newX, newy = e.pre_data(data_x, data_y)
for i in range(1):
e.train(newX, newy)
if i % 100 == 0:
print(e.curr_score)