forked from matlab-deep-learning/llms-with-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenAIChat.m
379 lines (332 loc) · 14.7 KB
/
openAIChat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
classdef(Sealed) openAIChat
%openAIChat Chat completion API from OpenAI.
%
% CHAT = openAIChat(systemPrompt) creates an openAIChat object with the
% specified system prompt.
%
% CHAT = openAIChat(systemPrompt,ApiKey=key) uses the specified API key
%
% CHAT = openAIChat(systemPrompt,Name=Value) specifies additional options
% using one or more name-value arguments:
%
% Tools - Array of openAIFunction objects representing
% custom functions to be used during chat completions.
%
% ModelName - Name of the model to use for chat completions.
% The default value is "gpt-3.5-turbo".
%
% Temperature - Temperature value for controlling the randomness
% of the output. Default value is 1.
%
% TopProbabilityMass - Top probability mass value for controlling the
% diversity of the output. Default value is 1.
%
% StopSequences - Vector of strings that when encountered, will
% stop the generation of tokens. Default
% value is empty.
%
% PresencePenalty - Penalty value for using a token in the response
% that has already been used. Default value is 0.
%
% FrequencyPenalty - Penalty value for using a token that is frequent
% in the training data. Default value is 0.
%
% StreamFun - Function to callback when streaming the
% result
%
% ResponseFormat - The format of response the model returns.
% "text" (default) | "json"
%
% openAIChat Functions:
% openAIChat - Chat completion API from OpenAI.
% generate - Generate a response using the openAIChat instance.
%
% openAIChat Properties:
% ModelName - Model name.
%
% Temperature - Temperature of generation.
%
% TopProbabilityMass - Top probability mass to consider for generation.
%
% StopSequences - Sequences to stop the generation of tokens.
%
% PresencePenalty - Penalty for using a token in the
% response that has already been used.
%
% FrequencyPenalty - Penalty for using a token that is
% frequent in the training data.
%
% SystemPrompt - System prompt.
%
% FunctionNames - Names of the functions that the model can
% request calls.
%
% ResponseFormat - Specifies the response format, text or json
%
% TimeOut - Connection Timeout in seconds (default: 10 secs)
%
% Copyright 2023-2024 The MathWorks, Inc.
properties
%TEMPERATURE Temperature of generation.
Temperature
%TOPPROBABILITYMASS Top probability mass to consider for generation.
TopProbabilityMass
%STOPSEQUENCES Sequences to stop the generation of tokens.
StopSequences
%PRESENCEPENALTY Penalty for using a token in the response that has already been used.
PresencePenalty
%FREQUENCYPENALTY Penalty for using a token that is frequent in the training data.
FrequencyPenalty
end
properties(SetAccess=private)
%TIMEOUT Connection timeout in seconds (default 10 secs)
TimeOut
%FUNCTIONNAMES Names of the functions that the model can request calls
FunctionNames
%MODELNAME Model name.
ModelName
%SYSTEMPROMPT System prompt.
SystemPrompt = []
%RESPONSEFORMAT Response format, "text" or "json"
ResponseFormat
end
properties(Access=private)
Tools
FunctionsStruct
ApiKey
StreamFun
end
methods
function this = openAIChat(systemPrompt, nvp)
arguments
systemPrompt {llms.utils.mustBeTextOrEmpty} = []
nvp.Tools (1,:) {mustBeA(nvp.Tools, "openAIFunction")} = openAIFunction.empty
nvp.ModelName (1,1) {mustBeMember(nvp.ModelName,["gpt-4-turbo", ...
"gpt-4-turbo-2024-04-09","gpt-4","gpt-4-0613", ...
"gpt-3.5-turbo","gpt-3.5-turbo-0125", ...
"gpt-3.5-turbo-1106"])} = "gpt-3.5-turbo"
nvp.Temperature {mustBeValidTemperature} = 1
nvp.TopProbabilityMass {mustBeValidTopP} = 1
nvp.StopSequences {mustBeValidStop} = {}
nvp.ResponseFormat (1,1) string {mustBeMember(nvp.ResponseFormat,["text","json"])} = "text"
nvp.ApiKey {mustBeNonzeroLengthTextScalar}
nvp.PresencePenalty {mustBeValidPenalty} = 0
nvp.FrequencyPenalty {mustBeValidPenalty} = 0
nvp.TimeOut (1,1) {mustBeReal,mustBePositive} = 10
nvp.StreamFun (1,1) {mustBeA(nvp.StreamFun,'function_handle')}
end
if isfield(nvp,"StreamFun")
this.StreamFun = nvp.StreamFun;
else
this.StreamFun = [];
end
if isempty(nvp.Tools)
this.Tools = [];
this.FunctionsStruct = [];
this.FunctionNames = [];
else
this.Tools = nvp.Tools;
[this.FunctionsStruct, this.FunctionNames] = functionAsStruct(nvp.Tools);
end
if ~isempty(systemPrompt)
systemPrompt = string(systemPrompt);
if ~(strlength(systemPrompt)==0)
this.SystemPrompt = {struct("role", "system", "content", systemPrompt)};
end
end
this.ModelName = nvp.ModelName;
this.Temperature = nvp.Temperature;
this.TopProbabilityMass = nvp.TopProbabilityMass;
this.StopSequences = nvp.StopSequences;
% ResponseFormat is only supported in the latest models only
if (nvp.ResponseFormat == "json")
if ismember(this.ModelName,["gpt-4","gpt-4-0613"])
error("llms:invalidOptionAndValueForModel", ...
llms.utils.errorMessageCatalog.getMessage("llms:invalidOptionAndValueForModel", "ResponseFormat", "json", this.ModelName));
else
warning("llms:warningJsonInstruction", ...
llms.utils.errorMessageCatalog.getMessage("llms:warningJsonInstruction"))
end
end
this.PresencePenalty = nvp.PresencePenalty;
this.FrequencyPenalty = nvp.FrequencyPenalty;
this.ApiKey = llms.internal.getApiKeyFromNvpOrEnv(nvp);
this.TimeOut = nvp.TimeOut;
end
function [text, message, response] = generate(this, messages, nvp)
%generate Generate a response using the openAIChat instance.
%
% [TEXT, MESSAGE, RESPONSE] = generate(CHAT, MESSAGES) generates a response
% with the specified MESSAGES.
%
% [TEXT, MESSAGE, RESPONSE] = generate(__, Name=Value) specifies additional options
% using one or more name-value arguments:
%
% NumCompletions - Number of completions to generate.
% Default value is 1.
%
% MaxNumTokens - Maximum number of tokens in the generated response.
% Default value is inf.
%
% ToolChoice - Function to execute. 'none', 'auto',
% or specify the function to call.
%
% Seed - An integer value to use to obtain
% reproducible responses
%
% Currently, GPT-4 Turbo with vision does not support the message.name
% parameter, functions/tools, response_format parameter, and stop
% sequences. It also has a low MaxNumTokens default, which can be overridden.
arguments
this (1,1) openAIChat
messages (1,1) {mustBeValidMsgs}
nvp.NumCompletions (1,1) {mustBePositive, mustBeInteger} = 1
nvp.MaxNumTokens (1,1) {mustBePositive} = inf
nvp.ToolChoice {mustBeValidFunctionCall(this, nvp.ToolChoice)} = []
nvp.Seed {mustBeIntegerOrEmpty(nvp.Seed)} = []
end
toolChoice = convertToolChoice(this, nvp.ToolChoice);
if isstring(messages) && isscalar(messages)
messagesStruct = {struct("role", "user", "content", messages)};
else
messagesStruct = messages.Messages;
end
if iscell(messagesStruct{end}.content) && any(cellfun(@(x) isfield(x,"image_url"), messagesStruct{end}.content))
if ~ismember(this.ModelName,["gpt-4-turbo","gpt-4-turbo-2024-04-09"])
error("llms:invalidContentTypeForModel", ...
llms.utils.errorMessageCatalog.getMessage("llms:invalidContentTypeForModel", "Image content", this.ModelName));
end
end
if ~isempty(this.SystemPrompt)
messagesStruct = horzcat(this.SystemPrompt, messagesStruct);
end
[text, message, response] = llms.internal.callOpenAIChatAPI(messagesStruct, this.FunctionsStruct,...
ModelName=this.ModelName, ToolChoice=toolChoice, Temperature=this.Temperature, ...
TopProbabilityMass=this.TopProbabilityMass, NumCompletions=nvp.NumCompletions,...
StopSequences=this.StopSequences, MaxNumTokens=nvp.MaxNumTokens, ...
PresencePenalty=this.PresencePenalty, FrequencyPenalty=this.FrequencyPenalty, ...
ResponseFormat=this.ResponseFormat,Seed=nvp.Seed, ...
ApiKey=this.ApiKey,TimeOut=this.TimeOut, StreamFun=this.StreamFun);
if isfield(response.Body.Data,"error")
err = response.Body.Data.error.message;
text = llms.utils.errorMessageCatalog.getMessage("llms:apiReturnedError",err);
message = struct("role","assistant","content",text);
end
end
function this = set.Temperature(this, temperature)
arguments
this openAIChat
temperature
end
mustBeValidTemperature(temperature);
this.Temperature = temperature;
end
function this = set.TopProbabilityMass(this,topP)
arguments
this openAIChat
topP
end
mustBeValidTopP(topP);
this.TopProbabilityMass = topP;
end
function this = set.StopSequences(this,stop)
arguments
this openAIChat
stop
end
mustBeValidStop(stop);
this.StopSequences = stop;
end
function this = set.PresencePenalty(this,penalty)
arguments
this openAIChat
penalty
end
mustBeValidPenalty(penalty)
this.PresencePenalty = penalty;
end
function this = set.FrequencyPenalty(this,penalty)
arguments
this openAIChat
penalty
end
mustBeValidPenalty(penalty)
this.FrequencyPenalty = penalty;
end
end
methods(Hidden)
function mustBeValidFunctionCall(this, functionCall)
if ~isempty(functionCall)
mustBeTextScalar(functionCall);
if isempty(this.FunctionNames)
error("llms:mustSetFunctionsForCall", llms.utils.errorMessageCatalog.getMessage("llms:mustSetFunctionsForCall"));
end
mustBeMember(functionCall, ["none","auto", this.FunctionNames]);
end
end
function toolChoice = convertToolChoice(this, toolChoice)
% if toolChoice is empty
if isempty(toolChoice)
% if Tools is not empty, the default is 'auto'.
if ~isempty(this.Tools)
toolChoice = "auto";
end
elseif ~ismember(toolChoice,["auto","none"])
% if toolChoice is not empty, then it must be "auto", "none" or in the format
% {"type": "function", "function": {"name": "my_function"}}
toolChoice = struct("type","function","function",struct("name",toolChoice));
end
end
end
end
function mustBeNonzeroLengthTextScalar(content)
mustBeNonzeroLengthText(content)
mustBeTextScalar(content)
end
function [functionsStruct, functionNames] = functionAsStruct(functions)
numFunctions = numel(functions);
functionsStruct = cell(1, numFunctions);
functionNames = strings(1, numFunctions);
for i = 1:numFunctions
functionsStruct{i} = struct('type','function', ...
'function',encodeStruct(functions(i))) ;
functionNames(i) = functions(i).FunctionName;
end
end
function mustBeValidMsgs(value)
if isa(value, "openAIMessages")
if numel(value.Messages) == 0
error("llms:mustHaveMessages", llms.utils.errorMessageCatalog.getMessage("llms:mustHaveMessages"));
end
else
try
llms.utils.mustBeNonzeroLengthTextScalar(value);
catch ME
error("llms:mustBeMessagesOrTxt", llms.utils.errorMessageCatalog.getMessage("llms:mustBeMessagesOrTxt"));
end
end
end
function mustBeValidPenalty(value)
validateattributes(value, {'numeric'}, {'real', 'scalar', 'nonsparse', '<=', 2, '>=', -2})
end
function mustBeValidTopP(value)
validateattributes(value, {'numeric'}, {'real', 'scalar', 'nonnegative', 'nonsparse', '<=', 1})
end
function mustBeValidTemperature(value)
validateattributes(value, {'numeric'}, {'real', 'scalar', 'nonnegative', 'nonsparse', '<=', 2})
end
function mustBeValidStop(value)
if ~isempty(value)
mustBeVector(value);
mustBeNonzeroLengthText(value);
% This restriction is set by the OpenAI API
if numel(value)>4
error("llms:stopSequencesMustHaveMax4Elements", llms.utils.errorMessageCatalog.getMessage("llms:stopSequencesMustHaveMax4Elements"));
end
end
end
function mustBeIntegerOrEmpty(value)
if ~isempty(value)
mustBeInteger(value)
end
end