-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_learning_with_opencv.py
85 lines (69 loc) · 2.89 KB
/
deep_learning_with_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# USAGE
# python deep_learning_with_opencv.py --image images/jemma.png --prototxt bvlc_googlenet.prototxt --model bvlc_googlenet.caffemodel --labels synset_words.txt
# import the necessary packages
import numpy as np
import argparse
import time
import cv2
# construct the argument parse and parse the arguments 创建参数解析器,从命令行解析参数
'''
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-l", "--labels", required=True,
help="path to ImageNet labels (i.e., syn-sets)")
args = vars(ap.parse_args())
'''
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default='./images/eagle.png',
help="path to input image")
ap.add_argument("-p", "--prototxt", default='./bvlc_googlenet.prototxt',
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", default='./bvlc_googlenet.caffemodel',
help="path to Caffe pre-trained model")
ap.add_argument("-l", "--labels", default='./synset_words.txt',
help="path to ImageNet labels (i.e., syn-sets)")
args = vars(ap.parse_args())
# load the input image from disk
image = cv2.imread(args["image"])
# load the class labels from disk
rows = open(args["labels"]).read().strip().split("\n")
classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows]
# our CNN requires fixed spatial dimensions for our input image(s)
# so we need to ensure it is resized to 224x224 pixels while
# performing mean subtraction (104, 117, 123) to normalize the input;
# after executing this command our "blob" now has the shape:
# (1, 3, 224, 224)
blob = cv2.dnn.blobFromImage(image, 1, (224, 224), (104, 117, 123))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# set the blob as input to the network and perform a forward-pass to
# obtain our output classification
net.setInput(blob)
start = time.time()
preds = net.forward()
end = time.time()
print("[INFO] classification took {:.5} seconds".format(end - start))
# sort the indexes of the probabilities in descending order (higher
# probabilitiy first) and grab the top-5 predictions
idxs = np.argsort(preds[0])[::-1][:5]
# loop over the top-5 predictions and display them
for (i, idx) in enumerate(idxs):
# draw the top prediction on the input image
if i == 0:
text = "Label: {}, {:.2f}%".format(classes[idx],
preds[0][idx] * 100)
cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 255), 2)
# display the predicted label + associated probability to the
# console
print("[INFO] {}. label: {}, probability: {:.5}".format(i + 1,
classes[idx], preds[0][idx]))
# display the output image
cv2.imshow("Image", image)
cv2.waitKey(0)