-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_model.py
110 lines (93 loc) · 3.41 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import json
import os
import PIL
import functools
import math
from collections import defaultdict
import random
import time
import pyprind
import glog as log
from shutil import copyfile
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from imageio import imwrite
from scipy.misc import imresize
import torchvision.transforms as T
from datasets import imagenet_deprocess_batch
from datasets import imagenet_preprocess
import datasets
import models
from options.opts import args, options
import utils.visualization as vis
torch.backends.cudnn.benchmark = True
def main():
global args, options
print(args)
print(options)
float_dtype = torch.cuda.FloatTensor
long_dtype = torch.cuda.LongTensor
log.info("Building loader...")
vocab, train_loader, val_loader = datasets.build_loaders(options["data"])
log.info("Building Generative Model...")
model, model_kwargs = models.build_model(
options["generator"],
vocab,
image_size=options["data"]["image_size"],
checkpoint_start_from=args.checkpoint_start_from)
model.type(float_dtype)
# Get the crop size for building transformer
crop_size = options['data']['data_opts']['crop_size'][0]
transform = T.Compose([
T.Resize(crop_size),
T.ToTensor(),
imagenet_preprocess(),
])
# Load the scene graphs
with open(args.scene_graphs_json, 'r') as f:
scene_graphs = json.load(f)
if 'crops' in scene_graphs[0].keys():
# Load the object crops we wanted
device = torch.device('cuda:0')
object_crops = []
for i, sg in enumerate(scene_graphs):
crop_names = sg['crops']
for j, name in enumerate(crop_names):
crops = []
crop_path = os.path.join(args.samples_path, 'crops', name)
with open(crop_path, 'rb') as f:
with PIL.Image.open(f) as crop:
W, H = crop.size
crop = transform(crop.convert('RGB'))
crops.append(crop)
object_crops.append(torch.cat(crops, dim=0))
object_crops.append(torch.zeros_like(object_crops[0]))
object_crops = torch.stack(object_crops, dim=0).to(device)
else:
object_crops = None
# Run the model forward
with torch.no_grad():
model_out = model.forward_json(scene_graphs, object_crops)
imgs_pred, imgs_rcst, boxes_pred, others = model_out
imgs = imagenet_deprocess_batch(imgs_pred)
if not os.path.exists(args.output_demo_dir):
os.mkdir(args.output_demo_dir)
# Save the generated images
for i in range(imgs.shape[0]):
img_np = imgs[i].numpy().transpose(1, 2, 0)
img_path = os.path.join(args.output_demo_dir, 'img_%d.png' % i)
imwrite(img_path, img_np)
print("Saving images finished.")
# Draw the scene graphs
if args.draw_scene_graphs == 1:
for i, sg in enumerate(scene_graphs):
sg_img = vis.draw_scene_graph(sg['objects'], sg['relationships'])
sg_img_path = os.path.join(args.output_demo_dir, 'sg%06d.png' % i)
imwrite(sg_img_path, sg_img)
print("Saving scene graph finsished.")
if __name__ == '__main__':
main()