-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain_dual_model.py
executable file
·405 lines (362 loc) · 17.6 KB
/
train_dual_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import argparse
import os
import shutil
import yaml
import json
import click
from pprint import pprint
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import vqa.lib.utils as utils
import vqa.lib.logger as logger
import vqa.datasets as datasets
# task specific package
import models.dual_model as models
import dual_model.lib.engine_v2 as engine
from vqg.lib.utils import set_trainable
import pdb
model_names = sorted(name for name in models.__dict__
if not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(
description='Train/Evaluate models',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
##################################################
# yaml options file contains all default choices #
parser.add_argument('--path_opt', default='options/dual_model/default.yaml', type=str,
help='path to a yaml options file')
################################################
# change cli options to modify default choices #
# logs options
parser.add_argument('--dir_logs', type=str, help='dir logs')
# data options
parser.add_argument('--vqa_trainsplit', type=str, choices=['train','trainval'])
# model options
parser.add_argument('--arch', choices=model_names,
help='vqa model architecture: ' +
' | '.join(model_names))
# parser.add_argument('--st_type',
# help='skipthoughts type')
# parser.add_argument('--emb_drop', type=float,
# help='embedding dropout')
# parser.add_argument('--st_dropout', type=float)
# parser.add_argument('--st_fixed_emb', default=None, type=utils.str2bool,
# help='backprop on embedding')
# optim options
parser.add_argument('-lr', '--learning_rate', type=float,
help='initial learning rate')
parser.add_argument('-b', '--batch_size', type=int,
help='mini-batch size')
parser.add_argument('--epochs', type=int,
help='number of total epochs to run')
parser.add_argument('--eval_epochs', type=int, default=10,
help='Number of epochs to evaluate the model')
# options not in yaml file
parser.add_argument('--start_epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint')
parser.add_argument('--save_model', default=True, type=utils.str2bool,
help='able or disable save model and optim state')
parser.add_argument('--save_all_from', type=int,
help='''delete the preceding checkpoint until an epoch,'''
''' then keep all (useful to save disk space)')''')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation and test set')
parser.add_argument('--print_freq', '-p', default=1000, type=int,
help='print frequency')
################################################
parser.add_argument('-ho', '--help_opt', dest='help_opt', action='store_true',
help='show selected options before running')
parser.add_argument('--beam_search', action='store_true', help='whether to use beam search, the batch_size will be set to 1 automatically')
parser.add_argument('--dual_training', action='store_true', help='Whether to use additional loss')
parser.add_argument('--share_embeddings', action='store_true', help='Whether to share the embeddings')
# parser.add_argument('--finetuning_conv_epoch', type=int, default=10, help='From which epoch to finetuning the conv layers')
parser.add_argument('--alternative_train', type=float, default=-1.,
help='The sample rate for QG training. if [alternative_train] > 1 or < 0, then jointly train.')
parser.add_argument('--partial', type=float, default=-1.,
help='Only use part of the VQA dataset. Valid range is (0, 1). [default: -1.]')
best_acc1 = 0.
best_acc5 = 0.
best_acc10 = 0.
best_loss_q = 1000.
def main():
to_set_trainable = True
global args, best_acc1, best_acc5, best_acc10, best_loss_q
args = parser.parse_args()
# Set options
options = {
'vqa' : {
'trainsplit': args.vqa_trainsplit,
'partial': args.partial,
},
'logs': {
'dir_logs': args.dir_logs
},
'optim': {
'lr': args.learning_rate,
'batch_size': args.batch_size,
'epochs': args.epochs,
'eval_epochs': args.eval_epochs,
}
}
if args.path_opt is not None:
with open(args.path_opt, 'r') as handle:
options_yaml = yaml.load(handle)
options = utils.update_values(options, options_yaml)
if 'model' not in options.keys():
options['model'] = {}
if args.dual_training:
options['logs']['dir_logs'] += '_dual_training'
print('## args'); pprint(vars(args))
print('## options'); pprint(options)
if args.help_opt:
return
# Set datasets
print('Loading dataset....',)
trainset = datasets.factory_VQA(options['vqa']['trainsplit'], options['vqa'],
opt_coco=options.get('coco', None),
opt_clevr=options.get('clevr', None),
opt_vgenome=options.get('vgnome', None))
train_loader = trainset.data_loader(batch_size=options['optim']['batch_size'],
num_workers=1,
shuffle=True)
if options['vqa'].get('sample_concept', False):
options['model']['concept_num'] = len(trainset.cid_to_concept)
valset = datasets.factory_VQA('val', options['vqa'],
opt_coco=options.get('coco', None),
opt_clevr=options.get('clevr', None),
opt_vgenome=options.get('vgnome', None))
val_loader = valset.data_loader(batch_size=options['optim']['batch_size'],
num_workers=1)
test_loader = valset.data_loader(batch_size=1 if args.beam_search else options['optim']['batch_size'],
num_workers=1)
print('Done.')
print('Setting up the model...')
# Set model, criterion and optimizer
# assert options['model']['arch_resnet'] == options['coco']['arch'], 'Two [arch] should be set the same.'
model = getattr(models, options['model']['arch'])(
options['model'], trainset.vocab_words(), trainset.vocab_answers())
if args.share_embeddings:
model.set_share_parameters()
# set_trainable(model.shared_conv_layer, False)
#optimizer = torch.optim.Adam([model.module.seq2vec.rnn.gru_cell.parameters()], options['optim']['lr'])
#optimizer = torch.optim.Adam(model.parameters(), options['optim']['lr'])
# optimizer = torch.optim.Adam([
# {'params': model.attention.parameters(), },
# {'params': model.seq2vec.parameters(), },
# {'params': model.vqa_module.parameters(), },
# {'params': list(model.vqg_module.parameters())[1:], 'weight_decay': 0.0},
# # filter(lambda p: p.requires_grad, model.parameters())
# ], lr=options['optim']['lr'], weight_decay=options['optim']['weight_decay'])
optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, model.parameters()),
lr=options['optim']['lr'], weight_decay=options['optim']['weight_decay'])
# Optionally resume from a checkpoint
exp_logger = None
if args.resume:
print('Loading saved model...')
args.start_epoch, best_acc1, exp_logger = load_checkpoint(model, optimizer,#model.module, optimizer,
os.path.join(options['logs']['dir_logs'], args.resume))
else:
# Or create logs directory
if os.path.isdir(options['logs']['dir_logs']):
if click.confirm('Logs directory already exists in {}. Erase?'
.format(options['logs']['dir_logs'], default=False)):
os.system('rm -r ' + options['logs']['dir_logs'])
else:
return
os.system('mkdir -p ' + options['logs']['dir_logs'])
path_new_opt = os.path.join(options['logs']['dir_logs'],
os.path.basename(args.path_opt))
path_args = os.path.join(options['logs']['dir_logs'], 'args.yaml')
with open(path_new_opt, 'w') as f:
yaml.dump(options, f, default_flow_style=False)
with open(path_args, 'w') as f:
yaml.dump(vars(args), f, default_flow_style=False)
if exp_logger is None:
# Set loggers
exp_name = os.path.basename(options['logs']['dir_logs']) # add timestamp
exp_logger = logger.Experiment(exp_name, options)
exp_logger.add_meters('train', make_meters())
exp_logger.add_meters('test', make_meters())
if options['vqa']['trainsplit'] == 'train':
exp_logger.add_meters('val', make_meters())
exp_logger.info['model_params'] = utils.params_count(model)
print('Model has {} parameters'.format(exp_logger.info['model_params']))
# Begin evaluation and training
model = nn.DataParallel(model).cuda()
if args.evaluate:
print('Start evaluating...')
path_logger_json = os.path.join(options['logs']['dir_logs'], 'logger.json')
evaluate_result = engine.evaluate(test_loader, model, exp_logger, args.print_freq)
pdb.set_trace()
save_results(evaluate_result, args.start_epoch, valset.split_name(),
options['logs']['dir_logs'], options['vqa']['dir'])
return
print('Start training')
for epoch in range(args.start_epoch, options['optim']['epochs']):
#adjust_learning_rate(optimizer, epoch)selected_a.reinforce(reward.data.view(selected_a.size()))
# train for one epoch
# at first, the conv layers are fixed
# if epoch > args.finetuning_conv_epoch and to_set_trainable:
# set_trainable(model.module.shared_conv_layer, True)
# optimizer = select_optimizer(
# options['optim']['optimizer'], params=filter(lambda p: p.requires_grad, model.parameters()),
# lr=options['optim']['lr'], weight_decay=options['optim']['weight_decay'])
# to_set_trainable = False
# optimizer = adjust_optimizer(optimizer, epoch, regime)
engine.train(train_loader, model, optimizer,
exp_logger, epoch, args.print_freq,
dual_training=args.dual_training,
alternative_train=args.alternative_train)
if options['vqa']['trainsplit'] == 'train':
# evaluate on validation set
acc1, acc5, acc10, loss_q = engine.validate(test_loader, model,
exp_logger, epoch, args.print_freq)
if (epoch + 1) % options['optim']['eval_epochs'] == 0:
#print('[epoch {}] evaluation:'.format(epoch))
evaluate_result = engine.evaluate(test_loader, model, exp_logger, args.print_freq) #model.module, exp_logger, args.print_freq)
save_results(evaluate_result, epoch, valset.split_name(),
options['logs']['dir_logs'], options['vqa']['dir'], is_testing=False)
# remember best prec@1 and save checkpoint
is_best = acc1 > best_acc1
is_best_q = loss_q < best_loss_q
best_acc5 = acc5 if is_best else best_acc5
best_acc10 = acc10 if is_best else best_acc10
best_acc1 = acc1 if is_best else best_acc1
best_loss_q = loss_q if is_best_q else best_loss_q
print('** [Best]\tAcc@1: {0:.2f}%\tAcc@5: {1:.2f}%\tAcc@10: {2:.2f}% \tQ_Loss: {3:.4f}'.format(
best_acc1, best_acc5, best_acc10, best_loss_q))
save_checkpoint({
'epoch': epoch,
'arch': options['model']['arch'],
'best_acc1': best_acc1,
'best_acc5': best_acc5,
'best_acc10': best_acc10,
'exp_logger': exp_logger
},
model.module.state_dict(), #model.module.state_dict(),
optimizer.state_dict(),
options['logs']['dir_logs'],
args.save_model,
args.save_all_from,
is_best, is_best_q)
else:
raise NotImplementedError
def make_meters():
meters_dict = {
'loss': logger.AvgMeter(),
'loss_a': logger.AvgMeter(),
'loss_q': logger.AvgMeter(),
'batch_time': logger.AvgMeter(),
'data_time': logger.AvgMeter(),
'epoch_time': logger.SumMeter(),
'bleu_score': logger.AvgMeter(),
'acc1': logger.AvgMeter(),
'acc5': logger.AvgMeter(),
'acc10': logger.AvgMeter(),
'dual_loss': logger.AvgMeter(),
}
return meters_dict
def save_results(results, epoch, split_name, dir_logs, dir_vqa, is_testing=True):
if is_testing:
subfolder_name = 'evaluate'
else:
subfolder_name = 'epoch_' + str(epoch)
dir_epoch = os.path.join(dir_logs, subfolder_name)
name_json = 'OpenEnded_mscoco_{}_vqg_results.json'.format(split_name)
# TODO: simplify formating
if 'test' in split_name:
name_json = 'vqa_' + name_json
path_rslt = os.path.join(dir_epoch, name_json)
os.system('mkdir -p ' + dir_epoch)
with open(path_rslt, 'w') as handle:
json.dump(results, handle)
def save_checkpoint(info, model, optim, dir_logs, save_model, save_all_from=None, is_best=True, is_best_q=True):
os.system('mkdir -p ' + dir_logs)
if save_all_from is None:
path_ckpt_info = os.path.join(dir_logs, 'ckpt_info.pth.tar')
path_ckpt_model = os.path.join(dir_logs, 'ckpt_model.pth.tar')
path_ckpt_optim = os.path.join(dir_logs, 'ckpt_optim.pth.tar')
path_best_info = os.path.join(dir_logs, 'best_info.pth.tar')
path_best_model = os.path.join(dir_logs, 'best_model.pth.tar')
path_best_optim = os.path.join(dir_logs, 'best_optim.pth.tar')
path_best_info_q = os.path.join(dir_logs, 'best_info_VQG.pth.tar')
path_best_model_q = os.path.join(dir_logs, 'best_model_VQG.pth.tar')
path_best_optim_q = os.path.join(dir_logs, 'best_optim_VQG.pth.tar')
# save info & logger
path_logger = os.path.join(dir_logs, 'logger.json')
info['exp_logger'].to_json(path_logger)
torch.save(info, path_ckpt_info)
if is_best:
shutil.copyfile(path_ckpt_info, path_best_info)
if is_best_q:
shutil.copyfile(path_ckpt_info, path_best_info_q)
# save model state & optim state
if save_model:
torch.save(model, path_ckpt_model)
torch.save(optim, path_ckpt_optim)
if is_best:
shutil.copyfile(path_ckpt_model, path_best_model)
shutil.copyfile(path_ckpt_optim, path_best_optim)
if is_best_q:
shutil.copyfile(path_ckpt_model, path_best_model_q)
shutil.copyfile(path_ckpt_optim, path_best_optim_q)
else:
is_best = False # because we don't know the test accuracy
path_ckpt_info = os.path.join(dir_logs, 'ckpt_epoch,{}_info.pth.tar')
path_ckpt_model = os.path.join(dir_logs, 'ckpt_epoch,{}_model.pth.tar')
path_ckpt_optim = os.path.join(dir_logs, 'ckpt_epoch,{}_optim.pth.tar')
# save info & logger
path_logger = os.path.join(dir_logs, 'logger.json')
info['exp_logger'].to_json(path_logger)
torch.save(info, path_ckpt_info.format(info['epoch']))
# save model state & optim state
if save_model:
torch.save(model, path_ckpt_model.format(info['epoch']))
torch.save(optim, path_ckpt_optim.format(info['epoch']))
if info['epoch'] > 1 and info['epoch'] < save_all_from + 1:
os.system('rm ' + path_ckpt_info.format(info['epoch'] - 1))
os.system('rm ' + path_ckpt_model.format(info['epoch'] - 1))
os.system('rm ' + path_ckpt_optim.format(info['epoch'] - 1))
if not save_model:
print('Warning train.py: checkpoint not saved')
def load_checkpoint(model, optimizer, path_ckpt):
path_ckpt_info = path_ckpt + '_info.pth.tar'
path_ckpt_model = path_ckpt + '_model.pth.tar'
path_ckpt_optim = path_ckpt + '_optim.pth.tar'
if os.path.isfile(path_ckpt_info):
info = torch.load(path_ckpt_info)
start_epoch = 0
best_acc1 = 0
exp_logger = None
if 'epoch' in info:
start_epoch = info['epoch']
else:
print('Warning train.py: no epoch to resume')
if 'best_acc1' in info:
best_acc1 = info['best_acc1']
else:
print('Warning train.py: no best_acc1 to resume')
if 'exp_logger' in info:
exp_logger = info['exp_logger']
else:
print('Warning train.py: no exp_logger to resume')
else:
print("Warning train.py: no info checkpoint found at '{}'".format(path_ckpt_info))
if os.path.isfile(path_ckpt_model):
model_state = torch.load(path_ckpt_model)
model.load_state_dict(model_state)
else:
print("Warning train.py: no model checkpoint found at '{}'".format(path_ckpt_model))
# if os.path.isfile(path_ckpt_optim):
# optim_state = torch.load(path_ckpt_optim)
# optimizer.load_state_dict(optim_state)
# else:
# print("Warning train.py: no optim checkpoint found at '{}'".format(path_ckpt_optim))
print("=> loaded checkpoint '{}' (epoch {}, best_acc1 {})"
.format(path_ckpt, start_epoch, best_acc1))
return start_epoch, best_acc1, exp_logger
if __name__ == '__main__':
main()