forked from quic/aimet-model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers_nlclassifier_quanteval.py
370 lines (321 loc) · 14.6 KB
/
transformers_nlclassifier_quanteval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# =============================================================================
# @@-COPYRIGHT-START-@@
#
# Copyright (c) 2022 of Qualcomm Innovation Center, Inc. All rights reserved.
#
# @@-COPYRIGHT-END-@@
# =============================================================================
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
#python import
import logging
import os
import random
import sys
import torch
from torch.utils.data import DataLoader
from datasets import load_dataset, load_metric
import numpy as np
import urllib
import progressbar
#transformers import
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PretrainedConfig,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import is_main_process
#AIMET imports
from aimet_torch import quantsim
from aimet_torch.quantsim import QuantizationSimModel
from aimet_torch.quantsim import load_checkpoint
from aimet_common.defs import QuantScheme
from aimet_torch.onnx_utils import OnnxExportApiArgs
# Utils imports
from utils.utils_nlclassifier_dataclass import ModelArguments, DataTrainingArguments, AuxArguments
OFFICIAL_URL_HEAD="https://github.com/quic/aimet-model-zoo/releases/download/torch_dlv3_w8a8_pc/" # To be replaced once released
os.environ['WANDB_DISABLED']="true"
logger = logging.getLogger(__name__)
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
class DownloadProgressBar():
def __init__(self):
self.dpb = None
def __call__(self, b_num, b_size, size):
widgets = [
'\x1b[33mDownloading weights \x1b[39m',
progressbar.Percentage(),
progressbar.Bar(marker='\x1b[32m#\x1b[39m'),
]
if self.dpb is not None:
self.dpb=progressbar.ProgressBar(widgets=widgets, maxval=size,redirect_stdout=True)
self.dpb.start()
processed = b_num * b_size
if processed >= size:
self.dpb.finish()
else:
self.dpb.update(processed)
def download_weights(model_args,data_args):
# Download weights to cache directory
if not os.path.exists(".cache"):
os.mkdir(".cache")
url_checkpoint_test=f'{OFFICIAL_URL_HEAD}/{data_args.task_name}_fp.pth'
urllib.request.urlretrieve(url_checkpoint_test,"./.cache/fp.pth",DownloadProgressBar())
url_checkpoint_test=f'{OFFICIAL_URL_HEAD}/{data_args.task_name}_qat.pth'
urllib.request.urlretrieve(url_checkpoint_test,"./.cache/qat.pth",DownloadProgressBar())
def main():
# Parse arguments
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, AuxArguments))
model_args, data_args, training_args, aux_args = parser.parse_args_into_dataclasses()
#download weights of original and quantized weight files
print ("===========download weights====================")
# download_weights(model_args,data_args) # TODO after OFFICIAL_URL_HEAD is specified
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
if data_args.task_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset("glue", data_args.task_name)
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
datasets = load_dataset("csv", data_files=data_files)
else:
# Loading a dataset from local json files
datasets = load_dataset("json", data_files=data_files)
# Labels
if data_args.task_name is not None:
is_regression = data_args.task_name == "stsb"
if not is_regression:
label_list = datasets["train"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
label_list = datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# ++++
config.return_dict = False
config.classifier_dropout = None
config.attention_probs_dropout_prob = model_args.attention_probs_dropout_prob
# ++++
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = torch.load(aux_args.fmodel_path)
# Preprocessing the datasets
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and data_args.task_name is not None
and is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else:
logger.warn(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif data_args.task_name is None and not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
def preprocess_function(examples):
# Tokenize the texts
args = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*args, padding=padding, max_length=data_args.max_seq_length, truncation=True)
# Map labels to IDs (not necessary for GLUE tasks)
if label_to_id is not None and "label" in examples:
result["label"] = [label_to_id[l] for l in examples["label"]]
return result
datasets = datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache
)
train_dataset = datasets["train"]
eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
if data_args.task_name is not None or data_args.test_file is not None:
test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]
# Get the metric function
if data_args.task_name is not None:
metric = load_metric("glue", data_args.task_name)
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if data_args.task_name is not None:
result = metric.compute(predictions=preds, references=p.label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
elif is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Load the Quantsim_modl object
quantsim_model = load_checkpoint(aux_args.qmodel_path)
# Initialize Trainer for evaluation
model.cuda()
model.eval()
quantsim_model.model.cuda()
quantsim_model.model.eval()
ftrainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=default_data_collator if data_args.pad_to_max_length else None,
)
qtrainer = Trainer(
model=quantsim_model.model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=default_data_collator if data_args.pad_to_max_length else None,
)
# Evaluation
feval_results, qeval_results = {}, {}
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
eval_datasets.append(datasets["validation_mismatched"])
for eval_dataset, task in zip(eval_datasets, tasks):
feval_result = ftrainer.evaluate(eval_dataset=eval_dataset)
qeval_result = qtrainer.evaluate(eval_dataset=eval_dataset)
# FP
foutput_eval_file = os.path.join(training_args.output_dir, f"eval_results_fp.txt")
if ftrainer.is_world_process_zero():
with open(foutput_eval_file, "w") as writer:
logger.info(f"***** FP Eval results *****")
for key, value in sorted(feval_result.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
writer.write(f"Memory usage:\n{torch.cuda.memory_summary(device=0, abbreviated=False)}")
feval_results.update(feval_result)
# QAT
qoutput_eval_file = os.path.join(training_args.output_dir, f"eval_results_qat.txt")
if qtrainer.is_world_process_zero():
with open(qoutput_eval_file, "w") as writer:
logger.info(f"***** QAT Eval results *****")
for key, value in sorted(qeval_result.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
writer.write(f"Memory usage:\n{torch.cuda.memory_summary(device=0, abbreviated=False)}")
qeval_results.update(qeval_result)
return None
if __name__ == "__main__":
main()