-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
393 lines (349 loc) · 16.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# MIT License
#
# Copyright (c) 2022 Matthieu Kirchmeyer & Yuan Yin
import numpy as np
import torch
from scipy.integrate import solve_ivp
from torch.utils.data import Dataset
from functools import partial
import math
import shelve
##################
# Lotka-Volterra #
##################
class ODEDataset(Dataset):
def __init__(self, n_data_per_env, t_horizon, params, dt, random_influence=0.2, method='RK45', group='train',
rdn_gen=1.):
super().__init__()
self.n_data_per_env = n_data_per_env
self.num_env = len(params)
self.len = n_data_per_env * self.num_env
self.t_horizon = float(t_horizon)
self.dt = dt
self.random_influence = random_influence
self.params_eq = params
self.test = (group == 'test')
self.max = np.iinfo(np.int32).max
self.buffer = dict()
self.indices = [list(range(env * n_data_per_env, (env + 1) * n_data_per_env)) for env in range(self.num_env)]
self.method = method
self.rdn_gen = rdn_gen
def _f(self, t, x, env=0):
raise NotImplemented
def _get_init_cond(self, index):
raise NotImplemented
def __getitem__(self, index):
env = index // self.n_data_per_env
env_index = index % self.n_data_per_env
t = torch.arange(0, self.t_horizon, self.dt).float()
out = {'t': t, 'env': env}
if self.buffer.get(index) is None:
y0 = self._get_init_cond(env_index)
y = solve_ivp(partial(self._f, env=env), (0., self.t_horizon), y0=y0, method=self.method,
t_eval=np.arange(0., self.t_horizon, self.dt))
y = torch.from_numpy(y.y).float()
out['state'] = y
self.buffer[index] = y.numpy()
else:
out['state'] = torch.from_numpy(self.buffer[index])
out['index'] = index
out['param'] = torch.tensor(list(self.params_eq[env].values()))
return out
def __len__(self):
return self.len
class LotkaVolterraDataset(ODEDataset):
def _f(self, t, x, env=0):
alpha = self.params_eq[env]['alpha']
beta = self.params_eq[env]['beta']
gamma = self.params_eq[env]['gamma']
delta = self.params_eq[env]['delta']
d = np.zeros(2)
d[0] = alpha * x[0] - beta * x[0] * x[1]
d[1] = delta * x[0] * x[1] - gamma * x[1]
return d
def _get_init_cond(self, index):
np.random.seed(index if not self.test else self.max - index)
return np.random.random(2) + self.rdn_gen
##############
# Gray-Scott #
##############
class GrayScottDataset(Dataset):
def __init__(self, n_data_per_env, size, t_horizon, params, dt, n_block, dx=2., random_influence=0.2,
buffer_file=None, method='RK45', group='train'):
super().__init__()
self.n_data_per_env = n_data_per_env
self.num_env = len(params)
self.len = n_data_per_env * self.num_env
self.size = int(size) # size of the 2D grid
self.dx = dx # space step discretized domain [-1, 1]
self.time_horizon = float(t_horizon) # total time
self.n = int(t_horizon / dt) # number of iterations
self.random_influence = random_influence
self.dt_eval = dt
self.params_eq = params
self.test = (group == 'test')
self.max = np.iinfo(np.int32).max
self.buffer = shelve.open(buffer_file)
self.method = method
self.indices = [list(range(env * n_data_per_env, (env + 1) * n_data_per_env)) for env in range(self.num_env)]
self.n_block = n_block
def _laplacian2D(self, a):
# a_nn | a_nz | a_np
# a_zn | a | a_zp
# a_pn | a_pz | a_pp
a_zz = a
a_nz = np.roll(a_zz, (+1, 0), (0, 1))
a_pz = np.roll(a_zz, (-1, 0), (0, 1))
a_zn = np.roll(a_zz, (0, +1), (0, 1))
a_zp = np.roll(a_zz, (0, -1), (0, 1))
a_nn = np.roll(a_zz, (+1, +1), (0, 1))
a_np = np.roll(a_zz, (+1, -1), (0, 1))
a_pn = np.roll(a_zz, (-1, +1), (0, 1))
a_pp = np.roll(a_zz, (-1, -1), (0, 1))
return (- 3 * a + 0.5 * (a_nz + a_pz + a_zn + a_zp) + 0.25 * (a_nn + a_np + a_pn + a_pp)) / (self.dx ** 2)
def _vec_to_mat(self, vec_uv):
UV = np.split(vec_uv, 2)
U = np.reshape(UV[0], (self.size, self.size))
V = np.reshape(UV[1], (self.size, self.size))
return U, V
def _mat_to_vec(self, mat_U, mat_V):
dudt = np.reshape(mat_U, self.size * self.size)
dvdt = np.reshape(mat_V, self.size * self.size)
return np.concatenate((dudt, dvdt))
def _f(self, t, uv, env=0):
U, V = self._vec_to_mat(uv)
deltaU = self._laplacian2D(U)
deltaV = self._laplacian2D(V)
dUdt = (self.params_eq[env]['r_u'] * deltaU - U * (V ** 2) + self.params_eq[env]['f'] * (1. - U))
dVdt = (self.params_eq[env]['r_v'] * deltaV + U * (V ** 2) - (self.params_eq[env]['f'] + self.params_eq[env]['k']) * V)
duvdt = self._mat_to_vec(dUdt, dVdt)
return duvdt
def _get_init_cond(self, index):
np.random.seed(index if not self.test else self.max - index)
size = (self.size, self.size)
U = 0.95 * np.ones(size)
V = 0.05 * np.ones(size)
for _ in range(self.n_block):
r = int(self.size / 10)
N2 = np.random.randint(low=0, high=self.size - r, size=2)
U[N2[0]:N2[0] + r, N2[1]:N2[1] + r] = 0.
V[N2[0]:N2[0] + r, N2[1]:N2[1] + r] = 1.
return U, V
def __getitem__(self, index):
env = index // self.n_data_per_env
env_index = index % self.n_data_per_env
t = torch.arange(0, self.time_horizon, self.dt_eval).float()
if self.buffer.get(f'{env},{env_index}') is None:
print(f'generating {env},{env_index}')
uv_0 = self._mat_to_vec(*self._get_init_cond(env_index))
res = solve_ivp(partial(self._f, env=env), (0., self.time_horizon), y0=uv_0, method=self.method,
t_eval=np.arange(0., self.time_horizon, self.dt_eval))
res_uv = res.y
u, v = [], []
for i in range(self.n):
res_U, res_V = self._vec_to_mat(res_uv[:, i])
u.append(torch.from_numpy(res_U).unsqueeze(0))
v.append(torch.from_numpy(res_V).unsqueeze(0))
u = torch.stack(u, dim=1)
v = torch.stack(v, dim=1)
state = torch.cat([u, v], dim=0).float()
self.buffer[f'{env},{env_index}'] = {'state': state.numpy()}
return {'state': state, 't': t, 'env': env, 'index': index}
else:
buf = self.buffer[f'{env},{env_index}']
return {'state': torch.from_numpy(buf['state']), 't': t, 'env': env, 'index': index}
def __len__(self):
return self.len
#################
# Navier Stokes #
#################
class GaussianRF(object):
def __init__(self, dim, size, alpha=2, tau=3, sigma=None, boundary="periodic"):
self.dim = dim
if sigma is None:
sigma = tau ** (0.5 * (2 * alpha - self.dim))
k_max = size // 2
if dim == 1:
k = torch.cat((torch.arange(start=0, end=k_max, step=1), torch.arange(start=-k_max, end=0, step=1)), 0)
self.sqrt_eig = size * math.sqrt(2.0) * sigma * ((4 * (math.pi ** 2) * (k ** 2) + tau ** 2) ** (-alpha / 2.0))
self.sqrt_eig[0] = 0.
elif dim == 2:
wavenumers = torch.cat((torch.arange(start=0, end=k_max, step=1),
torch.arange(start=-k_max, end=0, step=1)), 0).repeat(size, 1)
k_x = wavenumers.transpose(0, 1)
k_y = wavenumers
self.sqrt_eig = (size ** 2) * math.sqrt(2.0) * sigma * (
(4 * (math.pi ** 2) * (k_x ** 2 + k_y ** 2) + tau ** 2) ** (-alpha / 2.0))
self.sqrt_eig[0, 0] = 0.0
elif dim == 3:
wavenumers = torch.cat((torch.arange(start=0, end=k_max, step=1),
torch.arange(start=-k_max, end=0, step=1)), 0).repeat(size, size, 1)
k_x = wavenumers.transpose(1, 2)
k_y = wavenumers
k_z = wavenumers.transpose(0, 2)
self.sqrt_eig = (size ** 3) * math.sqrt(2.0) * sigma * (
(4 * (math.pi ** 2) * (k_x ** 2 + k_y ** 2 + k_z ** 2) + tau ** 2) ** (-alpha / 2.0))
self.sqrt_eig[0, 0, 0] = 0.0
self.size = []
for j in range(self.dim):
self.size.append(size)
self.size = tuple(self.size)
def sample(self):
coeff = torch.randn(*self.size, dtype=torch.cfloat)
coeff = self.sqrt_eig * coeff
u = torch.fft.ifftn(coeff)
u = u.real
return u
class NavierStokesDataset(Dataset):
def __init__(self, n_data_per_env, size, t_horizon, params, dt_eval, dx=2., buffer_file=None, method='RK45', group='train'):
super().__init__()
self.size = int(size) # size of the 2D grid
self.params_eq = params
self.forcing_zero = params[0]['f']
self.n_data_per_env = n_data_per_env
self.num_env = len(params)
self.len = n_data_per_env * self.num_env
self.dx = dx # space step discretized domain [-1, 1]
self.t_horizon = float(t_horizon) # total time
self.n = int(t_horizon / dt_eval) # number of iterations
self.sampler = GaussianRF(2, self.size, alpha=2.5, tau=7)
self.dt_eval = dt_eval
self.dt = 1e-3
self.buffer = shelve.open(buffer_file)
self.test = (group == 'test')
self.max = np.iinfo(np.int32).max
self.method = method
self.indices = [list(range(env * n_data_per_env, (env + 1) * n_data_per_env)) for env in range(self.num_env)]
def navier_stokes_2d(self, w0, f, visc, T, delta_t, record_steps):
# Grid size - must be power of 2
N = w0.size()[-1]
# Maximum frequency
k_max = math.floor(N / 2.0)
# Number of steps to final time
steps = math.ceil(T / delta_t)
# Initial vorticity to Fourier space
w_h = torch.fft.fftn(w0, (N, N))
# Forcing to Fourier space
f_h = torch.fft.fftn(f, (N, N))
# If same forcing for the whole batch
if len(f_h.size()) < len(w_h.size()):
f_h = torch.unsqueeze(f_h, 0)
# Record solution every this number of steps
record_time = math.floor(steps / record_steps)
# Wavenumbers in y-direction
k_y = torch.cat((torch.arange(start=0, end=k_max, step=1, device=w0.device),
torch.arange(start=-k_max, end=0, step=1, device=w0.device)), 0).repeat(N, 1)
# Wavenumbers in x-direction
k_x = k_y.transpose(0, 1)
# Negative Laplacian in Fourier space
lap = 4 * (math.pi ** 2) * (k_x ** 2 + k_y ** 2)
lap[0, 0] = 1.0
# Dealiasing mask
dealias = torch.unsqueeze(
torch.logical_and(torch.abs(k_y) <= (2.0 / 3.0) * k_max, torch.abs(k_x) <= (2.0 / 3.0) * k_max).float(), 0)
# Saving solution and time
sol = torch.zeros(*w0.size(), record_steps, 1, device=w0.device, dtype=torch.float)
sol_t = torch.zeros(record_steps, device=w0.device)
# Record counter
c = 0
# Physical time
t = 0.0
for j in range(steps):
if j % record_time == 0:
# Solution in physical space
w = torch.fft.ifftn(w_h, (N, N))
# Record solution and time
sol[..., c, 0] = w.real
# sol[...,c,1] = w.imag
sol_t[c] = t
c += 1
# Stream function in Fourier space: solve Poisson equation
psi_h = w_h.clone()
psi_h = psi_h / lap
# Velocity field in x-direction = psi_y
q = psi_h.clone()
temp = q.real.clone()
q.real = -2 * math.pi * k_y * q.imag
q.imag = 2 * math.pi * k_y * temp
q = torch.fft.ifftn(q, (N, N))
# Velocity field in y-direction = -psi_x
v = psi_h.clone()
temp = v.real.clone()
v.real = 2 * math.pi * k_x * v.imag
v.imag = -2 * math.pi * k_x * temp
v = torch.fft.ifftn(v, (N, N))
# Partial x of vorticity
w_x = w_h.clone()
temp = w_x.real.clone()
w_x.real = -2 * math.pi * k_x * w_x.imag
w_x.imag = 2 * math.pi * k_x * temp
w_x = torch.fft.ifftn(w_x, (N, N))
# Partial y of vorticity
w_y = w_h.clone()
temp = w_y.real.clone()
w_y.real = -2 * math.pi * k_y * w_y.imag
w_y.imag = 2 * math.pi * k_y * temp
w_y = torch.fft.ifftn(w_y, (N, N))
# Non-linear term (u.grad(w)): compute in physical space then back to Fourier space
F_h = torch.fft.fftn(q * w_x + v * w_y, (N, N))
# Dealias
F_h = dealias * F_h
# Cranck-Nicholson update
w_h = (-delta_t * F_h + delta_t * f_h + (1.0 - 0.5 * delta_t * visc * lap) * w_h) / \
(1.0 + 0.5 * delta_t * visc * lap)
# Update real time (used only for recording)
t += delta_t
return sol, sol_t
def _get_init_cond(self, index):
torch.manual_seed(index if not self.test else self.max - index)
if self.buffer.get(f'init_cond_{index}') is None:
w0 = self.sampler.sample()
state, _ = self.navier_stokes_2d(w0, f=self.forcing_zero, visc=8e-4, T=30.0,
delta_t=self.dt, record_steps=20)
init_cond = state[:, :, -1, 0]
self.buffer[f'init_cond_{index}'] = init_cond.numpy()
else:
init_cond = torch.from_numpy(self.buffer[f'init_cond_{index}'])
return init_cond
def __getitem__(self, index):
env = index // self.n_data_per_env
env_index = index % self.n_data_per_env
t = torch.arange(0, self.t_horizon, self.dt_eval).float()
if self.buffer.get(f'{env},{env_index}') is None:
print(f'calculating index {env_index} of env {env}')
w0 = self._get_init_cond(env_index)
# w0 = F.interpolate(w0.unsqueeze(0).unsqueeze(0), scale_factor=2).squeeze(0).squeeze(0)
state, _ = self.navier_stokes_2d(w0, f=self.params_eq[env]['f'], visc=self.params_eq[env]['visc'],
T=self.t_horizon, delta_t=self.dt, record_steps=self.n)
# h, w, t, nc
state = state.permute(3, 2, 0, 1)[:, :self.n] # nc, t, h, w
# state = F.avg_pool2d(state, kernel_size=2, stride=2)
# print(state.shape)
self.buffer[f'{env},{env_index}'] = {'state': state.numpy()}
return {'state': state, 't': t, 'env': env}
else:
buf = self.buffer[f'{env},{env_index}']
return {'state': torch.from_numpy(buf['state'][:, :self.n]), 't': t, 'env': env, 'index': index}
def __len__(self):
return self.len
#########################
# Glycolitic Oscillator #
#########################
class GlycolyticOscillatorDataset(ODEDataset):
def _f(self, t, x, env=0):
keys = ['J0', 'k1', 'k2', 'k3', 'k4', 'k5', 'k6', 'K1', 'q', 'N', 'A', 'kappa', 'psi', 'k']
J0, k1, k2, k3, k4, k5, k6, K1, q, N, A, kappa, psi, k = [self.params_eq[env][k] for k in keys]
d = np.zeros(7)
k1s1s6 = k1 * x[0] * x[5] / (1 + (x[5]/K1) ** q)
d[0] = J0 - k1s1s6
d[1] = 2 * k1s1s6 - k2 * x[1] * (N - x[4]) - k6 * x[1] * x[4]
d[2] = k2 * x[1] * (N - x[4]) - k3 * x[2] * (A - x[5])
d[3] = k3 * x[2] * (A - x[5]) - k4 * x[3] * x[4] - kappa * (x[3] - x[6])
d[4] = k2 * x[1] * (N - x[4]) - k4 * x[3] * x[4] - k6 * x[1] * x[4]
d[5] = -2 * k1s1s6 + 2 * k3 * x[2] * (A - x[5]) - k5 * x[5]
d[6] = psi * kappa * (x[3] - x[6]) - k * x[6]
return d
def _get_init_cond(self, index):
np.random.seed(index if not self.test else self.max - index)
ic_range = [(0.15, 1.60), (0.19, 2.16), (0.04, 0.20), (0.10, 0.35), (0.08, 0.30), (0.14, 2.67), (0.05, 0.10)]
return np.random.random(7) * np.array([b-a for a, b in ic_range]) + np.array([a for a, _ in ic_range])