following 原教程,修改. so 路径
requirements
yapf==0.40.1
setuptools==59.5.0
将 save_flag=False 改成 True 设置 pred 路径 CTRL + F :modified by
存疑
mmcv.dump(outputs['bbox_results'], args.out)
-> mmcv.dump(outputs, args.out)
vim ~/.condarc
channels:
- defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
vim ~/.pip/pip.conf
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
# 创建虚拟环境
conda create -n kitti_api python=3.9 -y
# 激活
conda activate kitti_api
# 将kitti-api拉到本地
git clone https://github.com/PRBonn/semantic-kitti-api.git
# 进入目录并安装相应环境
cd semantic-kitti-api/
pip install -r requirements.txt
pip install PyOpenGL==3.1.1a1
# 添加环境变量
vim ~/.bashrc
# 将下行添加到.bashrc最后一行
export MESA_GL_VERSION_OVERRIDE=3.3
# 激活
source ~/.bashrc
# 激活后需要再次激活虚拟环境
conda activate kitti_api
# 运行脚本可视化
# 文件路径遵守kitti api中的readme
python visualize_voxels.py --sequence 08 --dataset /mnt/data2/mmdetection3d/SGN/sgn/
## ./visualize_voxels.py --sequence 00 --dataset /path/to/kitti/dataset/