-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0146. LRU Cache.js
253 lines (233 loc) · 5.69 KB
/
0146. LRU Cache.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
// get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
// put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
// The cache is initialized with a positive capacity.
// Follow up:
// Could you do both operations in O(1) time complexity?
// Example:
// LRUCache cache = new LRUCache( 2 /* capacity */ );
// cache.put(1, 1);
// cache.put(2, 2);
// cache.get(1); // returns 1
// cache.put(3, 3); // evicts key 2
// cache.get(2); // returns -1 (not found)
// cache.put(4, 4); // evicts key 1
// cache.get(1); // returns -1 (not found)
// cache.get(3); // returns 3
// cache.get(4); // returns 4
// 1) Object + Array
/**
* @param {number} capacity
*/
const LRUCache = function(capacity) {
this.capacity = capacity
this.list = []
this.obj = {}
}
/**
* @param {number} key
* @return {number}
*/
LRUCache.prototype.get = function(key) {
if (this.obj[key]) {
const index = this.list.indexOf(key)
this.list.splice(index, 1)
this.list.push(key)
return this.obj[key]
}
return -1
}
/**
* @param {number} key
* @param {number} value
* @return {void}
*/
LRUCache.prototype.put = function(key, value) {
if (this.obj[key]) {
const index = this.list.indexOf(key)
this.list.splice(index, 1)
this.list.push(key)
this.obj[key] = value
} else {
if (this.list.length === this.capacity) {
const key = this.list.shift()
delete this.obj[key]
}
this.list.push(key)
this.obj[key] = value
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* var obj = new LRUCache(capacity)
* var param_1 = obj.get(key)
* obj.put(key,value)
*/
// 2) Map + Double linked list
class DLinkedNode {
constructor(key, value) {
this.key = key
this.value = value
this.pre = null
this.post = null
}
}
class LRUCache {
constructor(capacity) {
this.capacity = capacity
this.cache = new Map()
this.count = 0
this.head = new DLinkedNode()
this.head.pre = null
this.tail = new DLinkedNode()
this.tail.post = null
this.head.post = this.tail
this.tail.pre = this.head
}
addNode(node) {
node.pre = this.head
node.post = this.head.post
this.head.post.pre = node
this.head.post = node
}
removeNode(node) {
let pre = node.pre
let post = node.post
pre.post = post
post.pre = pre
}
moveToHead(node) {
this.removeNode(node)
this.addNode(node)
}
popTail() {
let res = this.tail.pre
this.removeNode(res)
return res
}
get(key) {
let node = this.cache.get(key)
if (node === undefined) {
return -1
}
this.moveToHead(node)
return node.value
}
put(key, value) {
let node = this.cache.get(key)
if (node === undefined) {
let newNode = new DLinkedNode(key, value)
this.cache.set(key, newNode)
this.addNode(newNode)
++this.count
if (this.count > this.capacity) {
let tail = this.popTail()
this.cache.delete(tail.key)
--this.count
}
} else {
node.value = value
this.moveToHead(node)
}
}
}
// 3) Map + Double linked list
class Node {
constructor(key, value) {
this.key = key
this.value = value
this.prev = null
this.next = null
}
}
class DLinkedNode {
constructor() {
this.head = new Node()
this.tail = new Node()
this.head.next = this.tail
this.tail.prev = this.head
}
addToHead(node) {
node.prev = this.head
node.next = this.head.next
this.head.next.prev = node
this.head.next = node
}
removeNode(node) {
let prev = node.prev
let next = node.next
prev.next = next
next.prev = prev
}
moveToHead(node) {
this.removeNode(node)
this.addToHead(node)
}
popTail() {
let tail = this.tail.prev
this.removeNode(tail)
return tail
}
}
class LRUCache {
constructor(capacity) {
this.capacity = capacity
this.count = 0
this.cache = new Map()
this.dll = new DLinkedNode()
}
get(key) {
let node = this.cache.get(key)
if (!node) {
return -1
}
this.dll.moveToHead(node)
return node.value
}
put(key, value) {
let node = this.cache.get(key)
if (!node) {
let newNode = new Node(key, value)
this.cache.set(key, newNode)
this.dll.addToHead(newNode)
++this.count
if (this.count > this.capacity) {
let tail = this.dll.popTail()
this.cache.delete(tail.key)
--this.count
}
} else {
node.value = value
this.dll.moveToHead(node)
}
}
}
// Runtime: 192 ms, faster than 69.30% of JavaScript online submissions for LRU Cache.
// Memory Usage: 51.7 MB, less than 31.70% of JavaScript online submissions for LRU Cache.
// 4) Map
class LRUCache {
constructor(capacity) {
this.capacity = capacity
this.cache = new Map()
}
get(key) {
if (!this.cache.has(key)) {
return -1
}
const value = this.cache.get(key)
this.cache.delete(key)
this.cache.set(key, value)
return this.cache.get(key)
}
put(key, value) {
if (this.cache.has(key)) {
this.cache.delete(key)
}
this.cache.set(key, value)
if (this.cache.size > this.capacity) {
this.cache.delete(this.cache.keys().next().value)
}
}
}
// Runtime: 192 ms, faster than 69.57% of JavaScript online submissions for LRU Cache.
// Memory Usage: 50.8 MB, less than 82.45 % of JavaScript online submissions for LRU Cache.