-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0210. Course Schedule II.js
162 lines (148 loc) · 4.64 KB
/
0210. Course Schedule II.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// There are a total of n courses you have to take, labeled from 0 to n-1.
// Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
// Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
// There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.
// Example 1:
// Input: 2, [[1,0]]
// Output: [0,1]
// Explanation: There are a total of 2 courses to take. To take course 1 you should have finished
// course 0. So the correct course order is [0,1] .
// Example 2:
// Input: 4, [[1,0],[2,0],[3,1],[3,2]]
// Output: [0,1,2,3] or [0,2,1,3]
// Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both
// courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
// So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] .
// Note:
// The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
// You may assume that there are no duplicate edges in the input prerequisites.
// 1) Topological BFS
// similar: 0207
/**
* @param {number} numCourses
* @param {number[][]} prerequisites
* @return {number[]}
*/
const findOrder = (numCourses, prerequisites) => {
const inDegrees = Array(numCourses).fill(0)
const graph = buildGraph(numCourses, prerequisites)
const queue = []
const res = []
for (const [v] of prerequisites) {
inDegrees[v]++
}
for (let i = 0; i < inDegrees.length; i++) {
if (inDegrees[i] === 0) {
queue.push(i)
}
}
function buildGraph (num, prerequisites) {
const graph = Array(num).fill(null)
for (const [v, u] of prerequisites) {
if (!graph[u]) {
graph[u] = [v]
} else {
graph[u].push(v)
}
}
return graph
}
while (queue.length) {
const cur = queue.shift()
numCourses--
res.push(cur)
if (graph[cur]) {
for (const v of graph[cur]) {
inDegrees[v]--
if (inDegrees[v] === 0) {
queue.push(v)
}
}
}
}
return numCourses === 0 ? res : []
}
// Runtime: 100 ms, faster than 34.07% of JavaScript online submissions for Course Schedule II.
// Memory Usage: 40.7 MB, less than 33.28% of JavaScript online submissions for Course Schedule II.
// 2) Topological DFS
/**
* @param {number} numCourses
* @param {number[][]} prerequisites
* @return {number[]}
*/
const findOrder = (numCourses, prerequisites) => {
const inDegrees = Array(numCourses).fill(0)
const graph = buildGraph(numCourses, prerequisites)
const stack = []
const res = []
for (const [v] of prerequisites) {
inDegrees[v]++
}
for (let i = 0; i < inDegrees.length; i++) {
if (inDegrees[i] === 0) {
stack.push(i)
}
}
function buildGraph (num, prerequisites) {
const graph = Array(num).fill(null)
for (const [v, u] of prerequisites) {
if (!graph[u]) {
graph[u] = [v]
} else {
graph[u].push(v)
}
}
return graph
}
while (stack.length) {
const cur = stack.pop()
numCourses--
res.push(cur)
if (graph[cur]) {
for (const v of graph[cur]) {
inDegrees[v]--
if (inDegrees[v] === 0) {
stack.push(v)
}
}
}
}
return numCourses === 0 ? res : []
}
// Runtime: 156 ms, faster than 16.17% of JavaScript online submissions for Course Schedule II.
// Memory Usage: 42 MB, less than 22.43% of JavaScript online submissions for Course Schedule II.
// 3) simpler, but not efficient
/**
* @param {number} numCourses
* @param {number[][]} prerequisites
* @return {number[]}
*/
const findOrder = (numCourses, prerequisites) => {
const inDegrees = Array(numCourses).fill(0)
const queue = []
const res = []
for (const [v] of prerequisites) {
inDegrees[v]++
}
for (let i = 0; i < inDegrees.length; i++) {
if (inDegrees[i] === 0) {
queue.push(i)
}
}
while (queue.length) {
const cur = queue.shift()
numCourses--
res.push(cur)
for (const [v, u] of prerequisites) {
if (u === cur) {
inDegrees[v]--
if (inDegrees[v] === 0) {
queue.push(v)
}
}
}
}
return numCourses === 0 ? res : []
}
// Runtime: 168 ms, faster than 15.43% of JavaScript online submissions for Course Schedule II.
// Memory Usage: 41.9 MB, less than 23.45% of JavaScript online submissions for Course Schedule II.