-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlapsrn.py
82 lines (65 loc) · 2.84 KB
/
lapsrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Paper: Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
Url: https://arxiv.org/abs/1704.03915
Create by: zh320
Date: 2023/12/16
"""
import torch.nn as nn
from math import log2
from .modules import ConvAct, Upsample
class LapSRN(nn.Module):
def __init__(self, in_channels, out_channels, upscale, hid_channels=64, fe_layer_num=8,
act_type='leakyrelu', upsample_type='deconvolution'):
super(LapSRN, self).__init__()
assert fe_layer_num > 3, 'Layer number should be larger than 3.\n'
if upscale in [2, 4, 8]:
self.num_stage = int(log2(upscale))
scale_factor = 2
elif upscale == 3:
self.num_stage = 1
scale_factor = 3
else:
raise ValueError(f'Unsupported scale factor: {upscale}\n')
self.fe_branch = FeatureExtraction(in_channels, out_channels, hid_channels, self.num_stage,
fe_layer_num, scale_factor, upsample_type, act_type)
self.ir_branch = ImageReconstruction(in_channels, out_channels, self.num_stage,
scale_factor, upsample_type)
def forward(self, x):
feats = self.fe_branch(x)
x = self.ir_branch(x, feats)
return x
class FeatureExtraction(nn.Module):
def __init__(self, in_ch, out_ch, hid_ch, num_stage, layer_num, scale_factor,
upsample_type, act_type):
super(FeatureExtraction, self).__init__()
self.num_stage = num_stage
self.conv = nn.ModuleList()
self.out = nn.ModuleList()
for i in range(num_stage):
init_ch = in_ch if i==0 else hid_ch
layers = [ConvAct(init_ch, hid_ch, 3, act_type=act_type)]
for _ in range(layer_num - 3):
layers.append(ConvAct(hid_ch, hid_ch, 3, act_type=act_type))
layers.append(Upsample(hid_ch, hid_ch, scale_factor, upsample_type))
self.conv.append(nn.Sequential(*layers))
self.out.append(ConvAct(hid_ch, out_ch, 3, act_type=act_type))
def forward(self, x):
feats = []
for i in range(self.num_stage):
x = self.conv[i](x)
feat = self.out[i](x)
feats.append(feat)
return feats
class ImageReconstruction(nn.Module):
def __init__(self, in_ch, out_ch, num_stage, scale_factor, upsample_type):
super(ImageReconstruction, self).__init__()
self.num_stage = num_stage
self.up = nn.ModuleList()
for i in range(num_stage):
init_ch = in_ch if i == 0 else out_ch
self.up.append(Upsample(init_ch, out_ch, scale_factor, upsample_type))
def forward(self, img, feats):
for i in range(self.num_stage):
img = self.up[i](img)
img += feats[i]
return img