|
1 | 1 | # Introduction
|
| 2 | + |
2 | 3 | PyTorch implementation of efficient image super-resolution models.
|
| 4 | +\ |
| 5 | +<img src="https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/demo.png" width="100%" height="100%" /> |
3 | 6 |
|
4 | 7 | # Requirements
|
5 |
| -torch == 1.8.1 |
| 8 | + |
| 9 | +torch == 1.8.1 |
6 | 10 | torchmetrics
|
7 | 11 | loguru
|
8 | 12 | tqdm
|
9 | 13 |
|
10 | 14 | # Supported models
|
| 15 | + |
11 | 16 | - [CARN](models/carn.py) [^carn]
|
12 | 17 | - [DRCN](models/drcn.py) [^drcn]
|
13 | 18 | - [DRRN](models/drrn.py) [^drrn]
|
|
31 | 36 | [^vdsr]: [Accurate Image Super-Resolution Using Very Deep Convolutional Networks](https://arxiv.org/abs/1511.04587)
|
32 | 37 |
|
33 | 38 | # How to use
|
| 39 | + |
34 | 40 | ## DDP training (recommend)
|
| 41 | + |
35 | 42 | ```
|
36 | 43 | CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py
|
37 | 44 | ```
|
38 | 45 |
|
39 | 46 | ## DP training
|
| 47 | + |
40 | 48 | ```
|
41 | 49 | CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py
|
42 | 50 | ```
|
43 | 51 |
|
44 |
| -# Performances and checkpoints |
45 |
| -Benchmarks are coming. |
| 52 | +# Performances and checkpoints |
| 53 | + |
| 54 | +| Model | Year | Set5 | | Set14 | | BSD100 | | |
| 55 | +|:----------------------------------------------------------------------------------------------------------------:|:----:|:---------------:|:-------------:|:-----------:|:-------------:|:-----------:|:-------------:| |
| 56 | +| | | PSNR (paper/my) | SSIM | PSNR | SSIM | PSNR | SSIM | |
| 57 | +| [CARN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/carn_2x.pth) | 2018 | 37.76/37.90 | 0.9590/0.9605 | 33.52/33.14 | 0.9166/0.9152 | 32.09/32.06 | 0.8978/0.8985 | |
| 58 | +| [DRCN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/drcn_2x.pth) | 2015 | 37.63/37.85 | 0.9588/0.9604 | 33.04/33.22 | 0.9118/0.916 | 31.85/32.05 | 0.8942/0.8982 | |
| 59 | +| [DRRN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/drrn_2x.pth) | 2017 | 37.74/37.76 | 0.9591/0.9599 | 33.23/33.14 | 0.9136/0.9149 | 32.05/31.99 | 0.8973/0.8974 | |
| 60 | +| [EDSR](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/edsr_2x.pth) | 2017 | 37.99/37.90 | 0.9604/0.9606 | 33.57/33.22 | 0.9175/0.9163 | 32.16/32.10 | 0.8994/0.899 | |
| 61 | +| [ESPCN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/espcn_2x.pth) | 2016 | n.a./36.85 | n.a./0.9559 | n.a./32.31 | n.a./0.9087 | n.a./31.40 | n.a./0.8897 | |
| 62 | +| [FSRCNN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/fsrcnn_2x.pth) | 2016 | 37.00/37.27 | 0.9558/0.958 | 32.63/32.65 | 0.9088/0.9115 | 31.53/31.67 | 0.8920/0.8934 | |
| 63 | +| [IDN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/idn_2x.pth) | 2018 | 37.83/37.84 | 0.96/0.9604 | 33.30/33.12 | 0.9148/0.9155 | 32.08/32.06 | 0.8985/0.8985 | |
| 64 | +| [LapSRN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/lapsrn_2x.pth) | 2017 | 37.52/37.59 | 0.9591/0.9592 | 32.99/32.96 | 0.9124/0.9138 | 31.80/31.89 | 0.8952/0.8961 | |
| 65 | +| [SRCNN](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/srcnn_2x.pth) | 2014 | 36.66/36.88 | 0.9542/0.9561 | 32.45/32.42 | 0.9067/0.9092 | 31.36/31.50 | 0.8879/0.8907 | |
| 66 | +| [VDSR](https://github.com/zh320/efficient-image-super-resolution-pytorch/releases/download/v1.0/vdsr_2x.pth) | 2015 | 37.53/37.74 | 0.9587/0.9598 | 33.03/33.06 | 0.9124/0.9145 | 31.90/31.97 | 0.8960/0.8973 | |
| 67 | + |
| 68 | + |
46 | 69 |
|
47 | 70 | # Prepare the dataset
|
| 71 | + |
48 | 72 | ```
|
49 | 73 | /train
|
50 | 74 | /T91
|
|
0 commit comments