-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_dataset.py
45 lines (35 loc) · 1.65 KB
/
custom_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from .transforms import get_transform
class CustomDataset(Dataset):
'''This is an example of how you can play with your own dataset. This toy dataset can be downloaded via the following link
https://www.kaggle.com/datasets/karakaggle/kaggle-cat-vs-dog-dataset
Make sure you have splitted your dataset into train-val subsets properly.
'''
labels = {'Cat':0, 'Dog':1}
def __init__(self, config, mode='train'):
assert mode in ['train', 'val']
data_root = os.path.expanduser(config.data_root)
data_folder = os.path.join(data_root, mode)
if not os.path.isdir(data_folder):
raise RuntimeError(f'Image directory: {data_folder} does not exist.')
transform_list = [6,7,4,0,1] if mode == 'train' else [6,7,0,1]
self.transform = get_transform(config, transform_list=transform_list)
self.images, self.labels = [], []
for pet_cls in os.listdir(data_folder):
pet_folder = os.path.join(data_folder, pet_cls)
label = CustomDataset.labels[pet_cls]
for file_name in os.listdir(pet_folder):
self.images.append(os.path.join(pet_folder, file_name))
self.labels.append(label)
def __len__(self):
return len(self.images)
def __getitem__(self, index):
image = np.asarray(Image.open(self.images[index]).convert('RGB'))
label = self.labels[index]
# Perform augmentation and normalization
augmented = self.transform(image=image)
image = augmented['image']
return image, label