-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathpp_liteseg.py
203 lines (159 loc) · 7.51 KB
/
pp_liteseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Paper: PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
Url: https://arxiv.org/abs/2204.02681
Create by: zh320
Date: 2023/07/15
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .modules import conv1x1, conv3x3, ConvBNAct
from .model_registry import register_model
@register_model()
class PPLiteSeg(nn.Module):
def __init__(self, num_class=1, n_channel=3, encoder_channels=[32, 64, 256, 512, 1024],
encoder_type='stdc1', fusion_type='spatial', act_type='relu'):
super().__init__()
decoder_channel_hub = {'stdc1': [32, 64, 128], 'stdc2': [64, 96, 128]}
decoder_channels = decoder_channel_hub[encoder_type]
self.encoder = Encoder(n_channel, encoder_channels, encoder_type, act_type)
self.sppm = SPPM(encoder_channels[-1], decoder_channels[0], act_type)
self.decoder = FLD(encoder_channels, decoder_channels, num_class, fusion_type, act_type)
def forward(self, x):
size = x.size()[2:]
x3, x4, x5 = self.encoder(x)
x5 = self.sppm(x5)
x = self.decoder(x3, x4, x5, size)
return x
class Encoder(nn.Module):
def __init__(self, in_channels, encoder_channels, encoder_type, act_type):
super().__init__()
encoder_hub = {'stdc1':STDCBackbone, 'stdc2':STDCBackbone}
if encoder_type not in encoder_hub.keys():
raise ValueError(f'Unsupport encoder type: {encoder_type}.\n')
self.encoder = encoder_hub[encoder_type](in_channels, encoder_channels, encoder_type, act_type)
def forward(self, x):
x3, x4, x5 = self.encoder(x)
return x3, x4, x5
class SPPM(nn.Module):
def __init__(self, in_channels, out_channels, act_type):
super().__init__()
hid_channels = int(in_channels // 4)
self.act_type = act_type
self.pool1 = self._make_pool_layer(in_channels, hid_channels, 1)
self.pool2 = self._make_pool_layer(in_channels, hid_channels, 2)
self.pool3 = self._make_pool_layer(in_channels, hid_channels, 4)
self.conv = conv3x3(hid_channels, out_channels)
def _make_pool_layer(self, in_channels, out_channels, pool_size):
return nn.Sequential(
nn.AdaptiveAvgPool2d(pool_size),
ConvBNAct(in_channels, out_channels, 1, act_type=self.act_type)
)
def forward(self, x):
size = x.size()[2:]
x1 = F.interpolate(self.pool1(x), size, mode='bilinear', align_corners=True)
x2 = F.interpolate(self.pool2(x), size, mode='bilinear', align_corners=True)
x3 = F.interpolate(self.pool3(x), size, mode='bilinear', align_corners=True)
x = self.conv(x1 + x2 + x3)
return x
class FLD(nn.Module):
def __init__(self, encoder_channels, decoder_channels, num_class, fusion_type, act_type):
super().__init__()
self.stage6 = ConvBNAct(decoder_channels[0], decoder_channels[0])
self.fusion1 = UAFM(encoder_channels[3], decoder_channels[0], fusion_type)
self.stage7 = ConvBNAct(decoder_channels[0], decoder_channels[1])
self.fusion2 = UAFM(encoder_channels[2], decoder_channels[1], fusion_type)
self.stage8 = ConvBNAct(decoder_channels[1], decoder_channels[2])
self.seg_head = ConvBNAct(decoder_channels[2], num_class, 3, act_type=act_type)
def forward(self, x3, x4, x5, size):
x = self.stage6(x5)
x = self.fusion1(x, x4)
x = self.stage7(x)
x = self.fusion2(x, x3)
x = self.stage8(x)
x = self.seg_head(x)
x = F.interpolate(x, size, mode='bilinear', align_corners=True)
return x
class STDCBackbone(nn.Module):
def __init__(self, in_channels, encoder_channels, encoder_type, act_type):
super().__init__()
repeat_times_hub = {'stdc1': [1,1,1], 'stdc2': [3,4,2]}
repeat_times = repeat_times_hub[encoder_type]
self.stage1 = ConvBNAct(in_channels, encoder_channels[0], 3, 2)
self.stage2 = ConvBNAct(encoder_channels[0], encoder_channels[1], 3, 2)
self.stage3 = self._make_stage(encoder_channels[1], encoder_channels[2], repeat_times[0], act_type)
self.stage4 = self._make_stage(encoder_channels[2], encoder_channels[3], repeat_times[1], act_type)
self.stage5 = self._make_stage(encoder_channels[3], encoder_channels[4], repeat_times[2], act_type)
def _make_stage(self, in_channels, out_channels, repeat_times, act_type):
layers = [STDCModule(in_channels, out_channels, 2, act_type)]
for _ in range(repeat_times):
layers.append(STDCModule(out_channels, out_channels, 1, act_type))
return nn.Sequential(*layers)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x3 = self.stage3(x)
x4 = self.stage4(x3)
x5 = self.stage5(x4)
return x3, x4, x5
class STDCModule(nn.Module):
def __init__(self, in_channels, out_channels, stride, act_type):
super().__init__()
if out_channels % 8 != 0:
raise ValueError('Output channel should be evenly divided by 8.\n')
self.stride = stride
self.block1 = ConvBNAct(in_channels, out_channels//2, 1)
self.block2 = ConvBNAct(out_channels//2, out_channels//4, 3, stride)
if self.stride == 2:
self.pool = nn.AvgPool2d(3, 2, 1)
self.block3 = ConvBNAct(out_channels//4, out_channels//8, 3)
self.block4 = ConvBNAct(out_channels//8, out_channels//8, 3)
def forward(self, x):
x = self.block1(x)
x2 = self.block2(x)
if self.stride == 2:
x = self.pool(x)
x3 = self.block3(x2)
x4 = self.block4(x3)
return torch.cat([x, x2, x3, x4], dim=1)
class UAFM(nn.Module):
def __init__(self, in_channels, out_channels, fusion_type):
super().__init__()
fusion_hub = {'spatial': SpatialAttentionModule, 'channel': ChannelAttentionModule}
if fusion_type not in fusion_hub.keys():
raise ValueError(f'Unsupport fusion type: {fusion_type}.\n')
self.conv = conv1x1(in_channels, out_channels)
self.attention = fusion_hub[fusion_type](out_channels)
def forward(self, x_high, x_low):
size = x_low.size()[2:]
x_low = self.conv(x_low)
x_up = F.interpolate(x_high, size, mode='bilinear', align_corners=True)
alpha = self.attention(x_up, x_low)
x = alpha * x_up + (1 - alpha) * x_low
return x
class SpatialAttentionModule(nn.Module):
def __init__(self, out_channels):
super().__init__()
self.conv = conv1x1(4, 1)
def forward(self, x_up, x_low):
mean_up = torch.mean(x_up, dim=1, keepdim=True)
max_up, _ = torch.max(x_up, dim=1, keepdim=True)
mean_low = torch.mean(x_low, dim=1, keepdim=True)
max_low, _ = torch.max(x_low, dim=1, keepdim=True)
x = self.conv(torch.cat([mean_up, max_up, mean_low, max_low], dim=1))
x = torch.sigmoid(x) # [N, 1, H, W]
return x
class ChannelAttentionModule(nn.Module):
def __init__(self, out_channels):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.conv = conv1x1(4*out_channels, out_channels)
def forward(self, x_up, x_low):
avg_up = self.avg_pool(x_up)
max_up = self.max_pool(x_up)
avg_low = self.avg_pool(x_low)
max_low = self.max_pool(x_low)
x = self.conv(torch.cat([avg_up, max_up, avg_low, max_low], dim=1))
x = torch.sigmoid(x) # [N, C, 1, 1]
return x