-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathswiftnet.py
74 lines (58 loc) · 2.54 KB
/
swiftnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Paper: In Defense of Pre-trained ImageNet Architectures for Real-time
Semantic Segmentation of Road-driving Images
Url: https://arxiv.org/abs/1903.08469
Create by: zh320
Date: 2023/10/22
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .modules import conv1x1, PWConvBNAct, ConvBNAct, PyramidPoolingModule
from .backbone import ResNet, Mobilenetv2
from .model_registry import register_model
@register_model()
class SwiftNet(nn.Module):
def __init__(self, num_class=1, n_channel=3, backbone_type='resnet18', up_channels=128,
act_type='relu'):
super().__init__()
if 'resnet' in backbone_type:
self.backbone = ResNet(backbone_type)
channels = [64, 128, 256, 512] if backbone_type in ['resnet18', 'resnet34'] else [256, 512, 1024, 2048]
elif backbone_type == 'mobilenet_v2':
self.backbone = Mobilenetv2()
channels = [24, 32, 96, 320]
else:
raise NotImplementedError()
self.connection1 = ConvBNAct(channels[0], up_channels, 1, act_type=act_type)
self.connection2 = ConvBNAct(channels[1], up_channels, 1, act_type=act_type)
self.connection3 = ConvBNAct(channels[2], up_channels, 1, act_type=act_type)
self.spp = PyramidPoolingModule(channels[3], up_channels, act_type, bias=True)
self.decoder = Decoder(up_channels, num_class, act_type)
def forward(self, x):
size = x.size()[2:]
x1, x2, x3, x4 = self.backbone(x)
x1 = self.connection1(x1)
x2 = self.connection2(x2)
x3 = self.connection3(x3)
x4 = self.spp(x4)
x = self.decoder(x4, x1, x2, x3)
x = F.interpolate(x, size, mode='bilinear', align_corners=True)
return x
class Decoder(nn.Module):
def __init__(self, channels, num_class, act_type):
super().__init__()
self.up_stage3 = ConvBNAct(channels, channels, 3, act_type=act_type)
self.up_stage2 = ConvBNAct(channels, channels, 3, act_type=act_type)
self.up_stage1 = ConvBNAct(channels, num_class, 3, act_type=act_type)
def forward(self, x, x1, x2, x3):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
x += x3
x = self.up_stage3(x)
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
x += x2
x = self.up_stage2(x)
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
x += x1
x = self.up_stage1(x)
return x